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Abstract 
 

Many contemporary accounts of human reasoning assume that the mind is equipped with 
multiple heuristics that could be deployed to perform a given task. This raises the 
question of how the mind determines when to use which heuristic. To answer this 
question, we developed a rational model of strategy selection, based on the theory of 
rational metareasoning developed in the artificial intelligence literature. According to our 
model people learn to efficiently choose the strategy with the best cost-benefit tradeoff by 
learning a predictive model of each strategy’s performance. We found that our model can 
provide a unifying explanation for classic findings from domains ranging from decision-
making to arithmetic by capturing the variability of people’s strategy choices, their 
dependence on task and context, and their development over time. Systematic model 
comparisons supported our theory, and four new experiments confirmed its distinctive 
predictions. Our findings suggest that people gradually learn to make increasingly more 
rational use of fallible heuristics. This perspective reconciles the two poles of the debate 
about human rationality by integrating heuristics and biases with learning and rationality.  
 Keywords: bounded rationality; strategy selection; heuristics; meta-decision-
making; metacognitive reinforcement learning 
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To succeed in life we have to solve a wide range of problems that place very different 
demands on us: sometimes we have to think fast and sometimes we have to think slow 
(cf. Kahneman, 2011). For instance, avoiding a car accident requires a split-second 
decision, whereas founding a successful start-up requires investing a lot of time into 
anticipating the future and weighting potential outcomes appropriately. No single 
decision mechanism works well across all situations. To meet the wide range of demands 
posed by different decision problems, it has been proposed that the human brain is 
equipped with multiple decision systems (Dolan & Dayan, 2013) and decision strategies 
(Payne, Bettman, & Johnson, 1988). Dual-process theories are a prominent example of 
this perspective (Evans & Stanovich, 2013; Evans, 2003; Kahneman, 2011). The 
coexistence of multiple alternative strategies is not specific to decision making. People 
also appear to possess multiple strategies for inference (Gigerenzer & Selten, 2002), 
memory (Bjorklund & Douglas, 1997), self-control (Braver, 2012), problem solving 
(Fum & Del Missier, 2001), and mental arithmetic (Siegler, 1999) to name just a few.  
 The availability of multiple strategies that are applicable to the same problems 
raises the question how people decide when to use which strategy. The fact that so many 
different strategies have been observed under different circumstances shows that people’s 
strategy choices are highly variable and contingent on the situation and the task (Beach & 
Mitchell, 1978; Fum & Del Missier, 2001; Payne, 1982; Payne et al., 1988). Overall, the 
contingency of people’s strategy choices appears to be adaptive. Even though under 
certain circumstances people have been found to use heuristics that cause systematic 
errors (Ariely, 2009; Sutherland, 2013), their strategies are typically well-adapted to the 
problems to which they are applied (Anderson, 1990; Braver, 2012; Bröder, 2003; Fum & 
Del Missier, 2001; Payne, Bettman, & Johnson, 1993). For instance, Payne and 
colleagues found that when the probabilities of alternative outcomes fall off quickly, then 
decision makers employ frugal heuristics that prioritize the most probable outcomes at 
the expense of less probable ones. Similarly, decision makers select fast heuristics when 
they are under time pressure but more accurate ones when they are not (Payne et al., 
1988). These and other studies (e.g. Siegler, 1999) have also documented that people’s 
propensity to use one strategy rather than another changes over time. 

The adaptiveness of people’s strategy choices appears to increase with 
experience. For instance, as children gain more experience with mental arithmetic they 
gradually learn to choose effective and efficient strategies more frequently (Siegler, 
1999). In adults, adaptive changes in strategy selection have been observed on much 
shorter time scales. For instance, adults have been found to adapt their decision strategy 
to the structure of their decision environment within minutes as they repeatedly choose 
between different investment based on multiple attributes (Rieskamp & Otto, 2006): In a 
decision environment where the better investment option is determined by a single 
attribute people learn to use a fast-and-frugal heuristic that ignores all other attributes. 
But when the decision environment does not have that structure, then people learn to 
integrate multiple attributes. 

How can we explain the variability, task- and context-dependence, and change in 
people’s strategy choices? Despite the previous work reviewed in the following section 
and some recent progress on how the brain decides how to decide (Boureau, Sokol-
Hessner, & Daw, 2015) the strategy selection problem remains unsolved (Marewski & 
Link, 2014). Finally, while it is typically assumed that people’s use of heuristics is 
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irrational (Ariely, 2009; Marcus, 2009; Sutherland, 2013), there is increasing evidence 
for adaptive strategy selection (Boureau et al., 2015; Braver, 2012; Daw, Niv, & Dayan, 
2005; Fum & Del Missier, 2001; Gunzelmann & Anderson, 2003; Keramati, Dezfouli, & 
Piray, 2011; Payne et al., 1988). This raises the additional question whether and to what 
extent people’s strategy choices are rational.  
 In this article we formalize the strategy selection problem, derive a rational 
strategy selection mechanism, and show that it can explain a wide range of empirical 
phenomena including the variability, contingency, and change of strategy selection across 
multiple domains – ranging from decision-making to arithmetic – and time scales.  Our 
theory adds an important missing piece to the puzzle of bounded rationality by specifying 
when people should use which heuristic, and our findings reconcile the two poles of the 
debate about human rationality by suggesting that people gradually learn to make 
increasingly more rational use of their fallible heuristics.  
 In the next section, we situate our work in the debate about human rationality and 
previous research on strategy selection. We then develop an alternative, rational account 
of strategy selection based on the idea of rational metareasoning from artificial 
intelligence research (Russell & Wefald, 1991). In the following sections, we evaluate 
our theory against traditional theories of strategy selection and show that it provides a 
unifying explanation for a wide range of phenomena: We show that rational 
metareasoning can account for people’s ability to adaptively choose the sorting strategy 
that works best for each individual problem based on limited experience, while traditional 
theories of strategy selection cannot. In the subsequent sections, we show that this 
conclusion holds not only for behavioral strategies but is equally true of cognitive 
strategies for decision-making, and mental arithmetic that operate on internal 
representations. We conclude with the implications of our findings for the debate about 
human rationality and directions for future research. 

Background 

The debate about human rationality 
Historically, rationality has been defined as reasoning according to the laws of 

logic and probability theory and making decisions that conform to the axioms of expected 
utility theory (Von Neumann & Morgenstern, 1944). Consequently, the debate whether 
people are rational has traditionally been focused on whether or not people’s judgments 
and decisions follow the rules of these normative theories (Stanovich, 2009). Numerous 
studies suggested that human judgments systematically violate the laws of logic (e.g., 
Wason, 1968; Tversky & Kahneman, 1983) and probability theory (Tversky & 
Kahneman, 1974), and that our decisions fall short of the prescriptions of expected utility 
theory (Kahneman & Tversky, 1979). These cognitive biases have been shown to result 
from people’s reliance on simple heuristics that sacrifice guarantees of optimality for 
speed and efficiency (Tversky & Kahneman, 1974).  

Under the classical definition of rationality, it is irrational to rely on heuristics 
because they give rise to cognitive biases. Yet, this classical definition does not take into 
account that our decisions and judgments have to be made with limited cognitive 
resources in finite time. Hence, while the demonstration of cognitive biases suggest that 
we are not unboundedly rational, they do not rule out the possibility that people make 
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rational use of their finite time and limited cognitive resources. This hypothesis can be 
traced back to Simon’s notion of bounded rationality (Simon, 1955, 1972, 1956), but it 
has only recently been formalized mathematically (Griffiths, Lieder, & Goodman, 2015; 
Lewis, Howes, & Singh, 2014). In the following, we will refer to cognitive strategies that 
make optimal use of finite cognitive resources as resource-rational. 

Recent studies have found that major cognitive biases in judgment and decision-
making that have been interpreted as evidence against human rationality are consistent 
with the rational use of finite cognitive resources. Concretely, the anchoring bias that 
pervades human judgment appears to be the manifestation of a resource-rational strategy 
for drawing inferences under uncertainty (Lieder, Griffiths, & Goodman, 2012) and 
numerous cognitive biases in people’s decisions under uncertainty are accurately 
predicted by a resource-rational decision strategy (Lieder, Hsu, & Griffiths, 2014; Lieder, 
Griffiths, & Hsu, in press). This line of work demonstrates that fallible heuristics can be 
resource-rational for certain problems under some circumstances. Similarly, Gigerenzer 
and colleagues have found that simple, fast-and-frugal heuristics perform very well when 
their assumptions match the structure of the environment (Gigerenzer, Todd, & The ABC 
Group, 1999; Gigerenzer & Brighton, 2009; Gigerenzer & Selten, 2002; Gigerenzer, 
2008a, 2008b; Todd & Gigerenzer, 2012). 

Scholars who view heuristics as irrational kluges that give rise to fallacies and 
biases (Ariely, 2009; Marcus, 2009; Sutherland, 2013) emphasize situations in which the 
chosen heuristics are maladaptive, whereas researchers who interpret heuristics as 
rational strategies point to situations where people use them adaptively (Todd & 
Gigerenzer, 2012; Griffiths, Lieder, & Goodman, 2015). Arguably, most heuristics are 
neither rational nor irrational per se. Instead, their rationality depends on how well they 
fit the problem to which they are being applied. Hence, the degree to which people are 
rational depends on when they use which heuristic. The critical question thus becomes 
“Are heuristics chosen rationally?” In this article, we address this question by developing 
and testing a rational model of strategy selection.  

Previous theories of strategy selection 
Strategy selection was initially viewed as a metacognitive decision based on 

explicit metacognitive knowledge about which cognitive strategies are best suited for 
which purposes (Flavell, 1979). Consistent with this perspective, Beach and Mitchell 
(1978) proposed that people choose decision strategies by performing an explicit cost-
benefit analysis. Although Beach and Mitchell (1978) did not formalize this process 
enough to make quantitative predictions, their qualitative predictions were later 
confirmed in the domain of decision-making (Payne et al., 1988). Payne and colleagues 
demonstrated that which decision process performs best is contingent on time pressure 
and the structure of the decision problem.  

The participants in the experiments conducted by Payne et al. (1988) responded 
adaptively to task contingencies as if their strategy choices were based on a cost-benefit 
analysis.  Yet, under most circumstances, performing a complete cost-benefit analysis 
would take substantially longer than executing the most accurate strategy. In order to be 
beneficial, people’s strategy selection mechanism has to be efficient. Furthermore, it has 
to avoid the infinite regress that could potentially result from reasoning about reasoning. 
These considerations have led researchers to abandon the idea that strategies are selected 
by a metacognitive cost-benefit analysis in favor of simpler models that select strategies 
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by learning directly from experience (Erev & Barron, 2005; Rieskamp & Otto, 2006; 
Shrager & Siegler, 1998; Siegler & Shrager, 1984; Siegler, 1988). Consistent with this 
emphasis on learning, multiple experiments have found that people’s strategy choices 
become more adaptive with experience (Bröder, 2003; Payne et al., 1988; Rieskamp & 
Otto, 2006).  

Previous learning-based accounts of strategy selection were based on simple 
associative learning (Shrager & Siegler, 1998) and learning from feedback (Erev & 
Barron, 2005; Rieskamp & Otto, 2006). These mechanisms can be interpreted as a form 
of model-free metacognitive reinforcement learning in the sense they update the decision-
maker’s propensity to choose a strategy directly without building a model of what will 
happen when the strategy is selected1. According to the SSL (Rieskamp & Otto, 2006) 
and RELACS (Erev & Barron, 2005) models (defined in detail in Appendix A), people 
solve the strategy selection problem by learning which strategy works best on average in 
a given environment. This learning mechanism does not exploit the fact that every 
problem has distinct characteristics that determine the strategies’ effectiveness. 

According to the SCADS model (Shrager & Siegler, 1998), people learn to 
associate strategies with problem types. Every time a strategy is applied to a problem the 
association between the problem’s type and the strategy is strengthened, and this 
strengthening is strongest when the strategy was successful. Using the same mechanism, 
the SCADS model also learns a global association between each strategy and problems in 
general. When presented with a problem the SCADS model chooses the strategy for 
which the product of the problem type specific association strengths and the global 
association strength is highest. This learning mechanism presupposes that each problem 
has been identified as an instance of one or more problem types. If each problem belongs 
to exactly one category, then the SCADS model learns to use the same strategy for all 
problems of a given type, but each problem can belong to multiple categories. 

In his rational analysis of problem solving Anderson (1990) developed a more 
sophisticated strategy selection mechanism according to which people probabilistically 
select strategies (productions) that yield a high value of 𝑃 ⋅ 𝐺 − 𝐶 where 𝐺 is the value of 
achieving the goal and 𝑃	and 𝐶 are Bayesian estimates of the success probability and the 
cost of achieving the goal. This mechanism has been implemented in ACT-R to simulate 
strategy selection learning in problem solving (Gunzelmann & Anderson, 2003). 
However, like the model-free reinforcement learning mechanisms of SSL and RELACS 
(Erev & Barron, 2005; Rieskamp & Otto, 2006) the learning mechanism of ACT-R does 
not exploit the fat that some problems are more similar than others. 

The cognitive niche theory (Marewski & Schooler, 2011) complements theories 
points out that people need only choose between those strategies that are applicable in a 
given situation. It emphasizes that the affordances of most situations severely limit the 
number of applicable strategies, for instance because the information required by many 
strategies is unavailable or cannot be recalled. 

Recent work in computational neuroscience has modeled how the brain arbitrates 
between the model-free (habitual) and the model-based (goal-directed) decision system as 

                                                
1 From a different perspective, all theories of strategy selection learning can be seen as 
model-based because each strategy corresponds to a certain model of the environment 
(Gluth, Rieskamp, & Büchel, 2014). 
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meta-decision-making using ideas from reinforcement learning (Boureau et al., 2015; 
Daw et al., 2005; Keramati et al., 2011). This approach is promising and the 
reinforcement-learning framework is very powerful. However, it has yet to be extended 
to the complexities of the more general problem of strategy selection. In the following 
section, we pursue this idea to provide a new rational analysis of strategy selection that 
overcomes the limitations of previous theories. 

Strategy selection learning as metacognitive reinforcement learning 
In this section we provide a computational-level theory (Marr, 1982) of the 

strategy selection problem and propose a learning and a selection mechanism through 
which people might solve this problem. The key idea is that people learn to predict the 
accuracy and execution time of each strategy from features of individual problems and 
choose the strategy with the best predicted speed-accuracy tradeoff. 

The strategy selection problem 
Each environment 𝐸 can be characterized by the relative frequency 𝑃( with which 
different kinds of problems occur in it. In most environments, these problems are so 
diverse that none of people’s strategies can achieve the optimal speed-accuracy tradeoff 
on all of them. Optimal performance in such environments requires selecting different 
strategies for different types of problems. One way to achieve this would be to learn the 
optimal strategy for each problem separately through trial and error. This approach is 
unlikely to succeed in complex environments where no problem is exactly the same as 
any of the previous ones. Hence, in many real-world environments, learning about each 
problem separately would leave the agent completely unprepared for problems it has 
never seen before. This can be avoided by exploiting the fact that each problem has 
perceivable features 𝑓*,⋯ , 𝑓- that can be used to predict the performance of candidate 
strategies from their performance on previous problems. For instance, the features of a 
risky choice may include the number of options, the spread of the outcome probabilities, 
and the range of possible payoffs.  

How good it is to apply strategy 𝑠 to problem 6  depends not only on the expected 
reward but also on the expected cost of executing the strategy. Building on the theory of 
rational metareasoning developed in artificial intelligence research (Russell & Wefald, 
1991), this can be quantified by the value of computation (VOC): 

VOC 𝑠, problem 6 = 𝔼 𝑈 𝑠(problem 6 ); problem 6 − cost 𝑠, problem 6 , 
where 𝑠(problem 6 ) is the action the potentially stochastic strategy 𝑠 selects on 
problem 6 , 𝑈(𝐴) denotes the utility of taking action 𝐴, and cost 𝑠, problem 6  is the 
computational cost of executing strategy 𝑠 on that problem. In the following we will 
assume that the computational cost is driven primarily by the (cognitive) opportunity cost 
of the strategy’s execution time 𝑇 𝑠, problem 6 , that is  

cost 𝑠, problem 6 = 𝛾 ⋅ 𝑇 𝑠, problem 6 . 
The problem of optimal strategy selection can be defined as finding a mapping 𝑚:ℱ ↦ 𝒮  
from feature vectors (𝒇(𝒊) = (𝑓*(problem 6 ),⋯ , 𝑓-(problem 6 )) ∈ ℱ) to strategies (𝑠 ∈
𝒮) that maximizes the expected VOC of the selected strategy across all problems the 
environment might present. Hence, we can define the strategy selection problem as  
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argmax
R

𝑃( problem ⋅ VOC(𝑚 f(problem) ,problem)
problem	∈	𝒫

, 

where 𝒫 is the set of problems that can occur. 
Critically, the VOC of each strategy depends on the problem, but the strategy has 

to be chosen entirely based on the perceivable features 𝒇 and the strategy selection 
mapping 𝑚 has to be learned from experience. In machine learning, these kinds of 
problems are known as contextual multi-armed bandits (May, Korda, Lee, & Leslie, 
2012). Two critical features of this class of problems are that they impose an exploration-
exploitation tradeoff and require generalization. In the next section, we will leverage 
these insights to derive a rational strategy selection learning mechanism. 

The experience gained from applying a strategy 𝑠 to a problem with perceivable 
features 𝒇 and observing an outcome with utility 𝑢 after executing the strategy for 𝑡 units 
of time can be summarized by the tuple (𝒇, 𝑠, 𝑢, 𝑡). Hence, people’s experience after the 
first 𝑛 problems can be summarized by the history 

ℎY = f * , 𝑠 * , 𝑢 * , 𝑡(*) ,⋯ , f Y , 𝑠 Y , 𝑢 Y , 𝑡(Y) , 
where 𝒇 Z , 𝑠 Z , 𝑢(Z), and 𝑡(Z) are the feature vector of the 𝑖th problem, the strategy that was 
applied to it, and the resulting utility and execution time respectively. Strategy selection 
learning induces a sequence 𝑚 * ,𝑚(\),⋯ ,𝑚 ]  of strategy selection mappings that 
depends on the agent’s experience (ℎY) and its strategy selection learning mechanism 
𝑙:	ℋ ↦ ℳ where ℋ is the set of possible histories and ℳ is the set of possible strategy 
selection mechanisms. With this notation, we can express the agent’s performance on the 
𝑛th problem by 

VOC 𝑚(Y) 𝒇 Y , problem a , 
where 𝑚(Y) 𝒇 Y  is the strategy the agent selects for the 𝑛th problem, and the strategy 
selection mapping 𝑚(Y) is 𝑙(ℎ(Yb*)). Since the problem is sampled at random, the 
expected performance at time step 𝑛 is 

𝑉Y 𝑙 = 𝔼de VOC 𝑚(Y) 𝒇 Y , problem a 	|	𝑚 Y = 𝑙 ℎ Yb* . 
If the agent solves 𝑁 problems before it runs out of time, its total performance is  

𝑉hihjk(𝑙) = 𝔼 𝑉Y(𝑙)
]

Yl*

. 

Using this notation, we can define the optimal strategy selection learning mechanism 𝑙⋆ 
as the one that maximizes the agent’s total expected value of computation across all 
possible sequences of problems, that is 

𝑙⋆ = argmax
n
𝑉hihjk(𝑙). 

This concludes our computational-level analysis of strategy selection and strategy 
selection learning. We will now use this analysis as a starting point for deriving a rational 
strategy selection learning mechanism. 

A rational process model of strategy selection 
Our computational-level analysis identified that a general strategy selection 

learning mechanism should be able to transfer knowledge gained from solving one 
problem to new problems that are similar. In the reinforcement learning literature 
generalization is typically achieved by parametric function approximation (Sutton & 



STRATEGY SELECTION AS RATIONAL METAREASONING 
 

9 

Barto, 1998). The simplest version of this approach is to learn the coefficients of a linear 
function predicting the value of a state from its features. Such linear approximations 
require minimal effort to evaluate and can be learned very efficiently. We therefore 
propose that people learn an internal predictive model that approximates the value of 
applying a strategy 𝑠 to a problem by a weighted average of the problem’s features 
𝑓* problem ,⋯ , 𝑓Y(problem): 

VOC 𝑠, problem  ≈ 𝑤p,q ⋅ 𝑓p(problem)
Y

pl*

.								(1)	

This approximation is easy to evaluate, but it is not clear how it can be learned given that 
the VOC cannot be observed directly. However, when the strategy 𝑠 generates a decision, 
then the VOC can be decomposed into the uti1.lity of the decision’s outcome and the cost 
of executing the strategy. Assuming that the cost of executing the strategy is proportional 
to its execution time, the VOC can be approximated by 

VOC 𝑠, problem  ≈ 𝔼 𝑈|	problem, s − 𝛾 ⋅ 𝔼 𝑇	|	problem, 𝑠 ,								(2)	
where 𝑈 is the utility of the outcome obtained by following strategy 𝑠, 𝛾 is the agent’s 
opportunity cost per unit time and 𝔼 𝑇	|	problem, 𝑠  is the expected execution time of the 
strategy 𝑠 when applied to the problem.  
 Approximating the VOC thus becomes a matter of estimating three quantities: the 
expected utility of relying on the strategy, the opportunity cost per unit time, and the 
expected time required to execute the strategy. The agent can learn its opportunity cost 𝛾 
by estimating its reward rate (Boureau et al., 2015; Niv, Daw, Joel, & Dayan, 2007), and 
the utility of applying the strategy and its execution time 𝑇 can be observed. Therefore, 
when the reward is continuous, then it is possible to learn an efficient approximation to 
the VOC by learning linear predictive models of the utility of its decisions and its 
execution time and combining them according to 

VOC 𝑠, problem  ≈ 𝑤p,q
(t) ⋅ 𝑓p(problem)

Y

pl*

− 𝛾 ⋅ 𝑤p,q
u ⋅ 𝑓p problem

Y

pl*

. 

This equation is a special case of the general approach specified in Equation 1. When the 
outcome is binary, then the predictive model of the reward takes the form 

𝑃 𝑂 = 1|𝑠, problem =
1

1 + exp − 𝑤p,q
(t) ⋅ 𝑓p(problem)Y

pl*

. 

We model the agent’s estimate of its opportunity cost 𝛾 by the posterior mean 
𝔼 𝑟|𝑡total, 𝑟total  of its reward rate 𝑟 given the sum of rewards 𝑟hihjk that the agent has 
experienced and the time since the beginning of the experiment (𝑡total). To do so, we 
assume that both the prior and the likelihood function are Gaussian, that is 

𝑃 𝑟hihjk 𝑡hihjk 𝑟) = 𝒩 𝜇 = 𝑟, 𝜏 = 𝑡hihjk ⋅ 1 60𝑠 , 
𝑃 𝑟 = 𝒩 1,1 . 

In this model, the weight of the agent’s experience increases linearly with its time spent 
in the environment, and the prior corresponds to 60 sec worth of experience.  

Our theory covers learning and strategy selection. To simulate learning, the 
agent’s belief about the reward rate and the feature weights in the predictive model of a 
strategy’s accuracy and execution time are updated by Bayesian learning every time it 
has been executed: The belief about the reward rate 𝑟 is updated to 𝑃 𝑟|rtotal, 𝑡total  as 
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described in Section 2 of Appendix A. The weights of the execution time model are 
updated by Bayesian linear regression (see Section 3 of Appendix A). The weights of the 
reward model are updated by Bayesian logistic regression (see Section 4 of Appendix A) 
if the reward is binary (i.e., correct vs. incorrect), or by Bayesian linear regression (see 
Section 3 of Appendix A) when the reward is continuous (e.g., monetary). Lastly, our 
model learns which features are relevant for predicting the most recent strategy’s 
execution time and reward by performing Bayesian model selection as described in 
Section 5 of Appendix A. 

The second component of our model is strategy selection. Given the learned 
predictive models of execution time and reward, the agent could predict the expected 
VOC of each available strategy and select the strategy with the highest expected VOC. 
While this approach works well when the agent has already learned a good 
approximation to the VOC of each strategy, it ignores the value of learning about 
strategies whose performance is still uncertain. Hence, always using the strategy that 
appears best could prevent the agent from discovering that other strategies work even 
better. Yet, on average, strategies that appear sub-optimal will choose worse actions than 
the strategy that appears best. This problem recapitulates the well-known exploration-
exploitation dilemma in reinforcement learning. To solve this problem our model selects 
strategies by Thompson sampling (May, Korda, Lee, & Leslie, 2012; Thompson, 1933): 
For each strategy 𝑠, our model samples estimates 𝑤 = 𝑤p,q

u , 𝑤p,q
t  of the weights 𝑤 =

𝑤p,q
u , 𝑤p,q

t  of the predictive models of execution time and reward from their respective 
posterior distributions, that is 

𝑤p,q
u ∼ 𝑃 𝑤p,q

u ℎ�b*,q , 

𝑤p,q
t ∼ 𝑃 𝑤p,q

t ℎ�b*,q , 
where ℎ�b*,q is the agent’s past experience with strategy 𝑠 at the beginning of trial 𝑡.  
From these weights 𝑤, our model predicts the VOC values of all strategies 𝑠 by 

𝑉� 𝑠, problem  = 𝑤p,q
(t) ⋅ 𝑓p(problem)

Y

pl*

− 𝔼 𝛾|ℎ� ⋅ 𝑤p,q
u ⋅ 𝑓p problem

Y

pl*

, 

where 𝔼 𝛾|ℎ�  is the posterior expectation of the agent’s reward rate given its past 
experience. Finally, our model selects the strategy 𝑠�⋆ with the highest predicted VOC,  

𝑠�⋆ = argmax� 𝑉�(𝑠, problem) . 
This concludes the description of our model.  

Our proposal is similar to model-based reinforcement learning (Dolan & Dayan, 
2013; Gläscher, Daw, Dayan, & O’Doherty, 2010) in that it learns a predictive model. 
However, both the predictors and the predicted variables are different. While model-
based reinforcement learning aims to predict the next state and reward from the agent’s 
action (e.g., “Go left!"), our model learns to predict the costs and benefits of the agent’s 
deliberation from the agent’s cognitive strategy (e.g., planning four steps ahead vs. 
planning only one step ahead). While model-based reinforcement learning is about the 
control of behavior, our model is about the control of mental activities that may have no 
direct effect on behavior. In brief, the main difference is that we have modeled 
metacognitive learning instead of stimulus-response learning. Despite this difference in 
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semantics, the proposed learning mechanism is structurally similar to the semi-gradient 
SARSA algorithm from the reinforcement learning literature (Sutton & Barto, 1998). 
 As illustrated in Figure 1, our model’s prediction mechanism could be 
approximated by a simple feed-forward neural network: The first layer represents the 
input to the strategy selection network. The subsequent hidden layers extract features that 
are predictive of the strategy’s execution time and accuracy. The second last layer 
computes a linear combination of those features to predict the execution time and 
external reward of applying the strategy, and the final layer combines these predictions 
into an estimate of the VOC of applying the strategy in the current state. The weights of 
this network could be learned by a basic error-driven learning mechanism, and the 
features might emerge from applying the same error-driven learning mechanism to 
connections between the hidden layers (cf. Mnih et al., 2015). With one such network per 
strategy a simple winner-take-all network (Maass, 2000) could read out the strategy with 
the highest VOC. This neural network formulation suggests that a single forward pass 
through a small number of layers may be sufficient to compute each strategy’s VOC. The 
action potentials and synaptic transmission required to propagate neural activity from one 
layer to the next happens in milliseconds. The winner-take-all mechanism for reading out 
the strategy with the highest VOC can be performed in less than one tenth of a second 
(Oster, Douglas, & Liu, 2009). Hence, the brain might be able to execute the proposed 
strategy selection mechanism within fractions of a second.  

 Summary 
We have derived a rational process model of strategy selection as an efficient 

approximation to the optimal solution prescribed by rational metareasoning. In contrast to 
previous accounts of strategy selection, our model postulates a more sophisticated, 
feature-based representation of the problem to be solved and a learning mechanism that 
achieves generalization. Instead of just learning about the reward that each strategy 
obtains on average our model learns to predict each strategy’s execution time and 
expected reward on each individual problem.  Hence, while previous models learned 
which strategy works best on average, our model learns to predict which strategy is best 
for each individual problem. Whereas previous theories of strategy selection (Erev & 
Barron, 2005; Rieskamp & Otto, 2006; Siegler & Shipley, 1995; Siegler & Shrager, 
1984; Siegler, 1988) rejected the ideal of a cost-benefit analysis as intractable, we 
propose that people learn to approximate it efficiently. Note, however, that the 
consideration of the cost of thinking (Shugan, 1980) is not the distinguishing feature of 
our model because costs can be incorporated into the reward functions of previous 
theories of strategy selection. Rather, the main innovation of our theory is that strategies 
are chosen based on the features of the problem to be solved. In the remainder of the 
article we show that this allows our model to capture aspects of human cognition that 
were left unexplained by previous theories. 
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Figure 1: Our rational process model of strategy selection learning could be implemented 
in a simple feed-forward neural network. 

Evaluating the model with sorting strategies 
To test whether our rational model of strategy selection leaning can better account 

for how people’s strategy choices change with experience than traditional context-free 
accounts, like RELACS, SSL and SCADS, we designed an experiment in which feature-
based versus context-free strategy selection learning make qualitatively different 
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predictions.2 To differentiate between these two accounts we chose a domain in which the 
performance of alternative strategies is well understood and differs dramatically 
depending on easily detectable features of the problem. Furthermore, we were looking for 
a domain in which we could directly observe people’s strategy choices. These 
considerations led us to study how people learn to choose between two alternative 
strategies for sorting a list of numbers: cocktail sort and merge sort (Knuth, 1998). We 
chose these two sorting strategies because they have opposite strengths and weaknesses. 
Cocktail sort is very fast for short and nearly-sorted lists, but in the worst case its runtime 
increases quadratically with the length of the list (𝑂(𝑛\)). Thus. for long, unsorted, or 
reversely sorted lists cocktail sort is extremely inefficient.  By contrast, the execution 
time of merge sort does not depend on the degree to which the list is correctly or 
reversely sorted and its execution time increases only log-linearly with the length of the 
list (𝑂(𝑛 ⋅ log(𝑛))). In the following we will assume that the task is to sort a list of 
numbers in ascending order. 
 To apply our theory to model how people learn to select between these two 
sorting strategies, we have to specify the features by which sorting problems are 
represented. For simplicity, we assume that the basic features are the length 𝐿  of the list 
𝐿 = (𝑒*, 𝑒\,⋯ , 𝑒|�|) and a measure of its presortedness: 

𝑓* = 𝐿 , 
𝑓\ = 𝑚: 𝑒R > 𝑒R�* , 

where 𝐴  denotes the number of elements in the set or list 𝐴. The second feature 
estimates the number of pairs of elements that would have to be swapped in order to sort 
the list in ascending order from the number of times one element is larger than the next. 
Since it is well known that the runtimes of sorting algorithms are polynomials in the 
length of the list and its logarithm, we assume that the feature vector 𝒇 includes all terms 
of the form 

𝑓*
p� ⋅ log 𝑓* p� ⋅ 𝑓\

p� ⋅ log 𝑓\ p�, 
where 𝑘*, 𝑘\, 𝑘�, 𝑘� ∈ {0,1,2} and 𝑘ZZ ≤ 2. As described above, our model will select a 
subset of these features and use them to predict the execution time and success 
probability of each sorting strategy. 

Pilot studies and simulations 
To ensure that our experiment would be able to discriminate between rational 

metareasoning, SSL, RELACS, and SCADS, we simulated a number of candidate 
experiments. These simulations required a model of each strategy’s performance. To 
obtain this execution time model, we conducted two pilot experiments in which we 
measured the execution time characteristics of cocktail sort (Pilot Experiment 1) and 
merge sort (Pilot Experiment 2) on different types of lists. The results of these pilot 
experiments will also allow us to determine when each strategy should be used to achieve 
optimal performance.  

We recruited 200 participants on Amazon Mechanical Turk: 100 for each pilot 
experiment. Each participant was paid 75 cents for about 15 minutes of work. In Pilot 
Experiment 1 participants were required to follow the step-by-step instructions of the 
cocktail sort strategy (see Figure 2a). In Pilot Experiment 2 participants were required to 

                                                
2 A preliminary version of this study appeared in Lieder, Plunkett, et al. (2015).  
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follow the step-by-step instructions of the merge sort strategy (see Figure 2b).  These two 
studies and all following experiments were conducted under the IRB protocol number 
2015-05-755 entitled “Cognitive Research Using Amazon Mechanical Turk” approved 
by the institutional review board of the University of California, Berkeley. Participants 
were given detailed written instructions that precisely specified the strategy they had to 
execute. Furthermore, at each step the interface allowed only the correct next move of the 
required strategy and participants received feedback when they attempted an incorrect 
move. After completing four practice trials, participants were randomly assigned to sort a 
series of lists of varying lengths and presortedness. The lists were randomly generated so 
that each list was equally likely to be nearly sorted (1-20% inversions), unsorted (21-80% 
inversions), or nearly inversely sorted (81-100% inversions). Each list was equally likely 
to be very short (3-8 elements), short (9-16 elements), long (17-32 elements), or very 
long (33-56 elements). These lists were distributed across participants such that the total 
anticipated sorting time was between 10 and 20 minutes. 

Figure 2: Interfaces used in Experiment 1 to train participants to perform (a) cocktail sort 
and (b) merge sort. 
 

We used the measured sorting times to estimate how long comparisons and moves 
take for each strategy. For each list, we regressed the sorting times of each strategy on the 
number of comparisons and the number of moves that it performed on that list. The 
resulting model for the execution time 𝑇�� of cocktail sort (CS) was 

𝑇�� = 𝑡CS + 𝜀CS,		 
𝑡CS 	= 19.59 + 0.19 ⋅ 	𝑛�i��j�6�ia� + 0.31 ⋅ 	𝑛�i���				 3 , 

𝜀�� ∼ 	𝒩 0, 0.21 ⋅ 	 𝑡CS
\ , 

where 𝑡�� is the expected execution time, 𝜀�� is the noise, 𝑛comparisons is the number of 
comparisons and 𝑛moves is the number of moves. For merge sort (MS) our data showed 
that both comparisons and moves took substantially longer: 	

𝑇�� = 𝑡�� + 𝜀��,	 
𝑡�� = 13.98 + 1.10 ⋅ 	𝑛�i��j�6�ia� + 0.52 ⋅ 	𝑛R ¡¢q				 4 	 
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𝜀�� ∼ 	𝒩 0,0.15 ⋅ 𝑡¤�\ .	
According to these execution time models (Equations 3-4) and the number of 

comparisons and moves required by these sorting strategies, people should choose merge 
sort for long and nearly inversely sorted lists and cocktail sort for lists that are either 
nearly-sorted or short. We will therefore classify people’s strategy choices as adaptive 
when they conform to these rules and as non-adaptive when they violate them. 

The execution time models of the two strategies also allowed us to simulate 104 
candidate experiments according to rational metareasoning, SSL, RELACS, and SCADS.  
To apply SSL, RELACS, and SCADS to sorting strategies, we had to specify the reward 
function. We evaluated three notions of reward: i) correctness (𝑟 ∈ {−0.1, +0.1}3, ii) 
correctness minus time cost (𝑟 − 𝛾 ⋅ 	𝑡, where 𝑡 is the execution time and  𝛾 = 1 is the 
opportunity cost), and iii) reward rate (𝑟 𝑡). Each of the three theories (SSL, RELACS, 
and SCADS) was combined with each of these three notions of reward leading to 9 
alternative models in total. Since the SCADS model presupposes that each problem is 
characterized by a collection of binary features we designed the following categories: 
short lists (length ≤ 	16), long lists (length ≥ 	32), nearly sorted lists (less than 10% 
inversions), and random lists (more than 25% inversions). According to the SCADS 
model, each problem can belong to multiple categories or none at all. To obtain an upper 
bound on how well the SCADS model can select sorting strategies, we also considered 
three SCADS models with categories that were optimized for this experiment. These 
categories were short-and-presorted, long-and-presorted, short-and-inverted, long-and-
inverted, short-and-inverted, long-and-disordered, and short-and-disordered. Each of 
these categories is the conjunction of one attribute based on length (short means ≤ 25 
and long means > 25) and one attribute based on presortedness (presorted means less 
than 25% inversions, inverted means more than 75% inversions, and disordered means 
25—75% inversions). All associations between strategies and categories were initialized 
with a strength equivalent to one successful application, and the global strategy-reward 
associations were initialized in the same way. For consistency, the time cost parameter 𝛾 
of the rational metareasoning model was also set to 1.4   

Our simulations identified several candidate experiments for which rational 
metareasoning made qualitatively different predictions than SSL, RELACS, and SCADS. 
We selected the experimental design shown in Table 1 because it achieved the best 
tradeoff between discriminability and duration. For this experimental design, rational 
metareasoning predicted that the choices of more than 70% of our participants would 
demonstrate adaptive strategy selection, whereas the SSL, RELACS, and SCADS models 
all predicted that people would consistently fail to select their sorting strategy adaptively 
(see Figure 4). 
  

                                                
3 These specific values were taken from the SCADS model (Shrager & Siegler, 1998). 
4 The precise weighting of time cost versus error cost was irrelevant in these simulations 
because each sorting strategy was guaranteed to always generate a correct solution. Thus, 
there was no need to simulate how people estimate the time cost from experience. 
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Table 1: Design of Experiment 1. 

 

Methods 
We recruited 100 participants on Amazon Mechanical Turk. Each participant was 

paid $1.25 for about 20 minutes of work. The experiment comprised three blocks:  the 
training block, the choice block, and the execution block. 

In the training block, each participant was taught the cocktail sort strategy and the 
merge sort strategy. In each of the 11 training trials summarized in   
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Table 1 participants were instructed which strategy to use. The interface shown in 
Figure 2 enforced that each of its step was executed correctly. Participants first practiced 
cocktail sort for five trials. Next, they practiced merge sort for four trials. These practice 
trials comprised nearly-reversely sorted lists of lengths 4, 8, and 16 and nearly-sorted lists 
of length 16 and 32. The nearly-sorted lists were created from ascending lists by inserting 
a randomly selected element at a random location. Nearly inversely sorted lists were 
created by applying the same procedure to a descending list. Finally, the last two trials 
contrasted the two strategies on two long, nearly-sorted lists (see   
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Table 1). 
In the choice block, participants were shown 18 test lists and asked to choose 

which strategy (cocktail sort or merge sort) they would use if they had to sort it. To 
incentivize participants to choose the more efficient strategy, the instructions announced 
that in the following block one of their choices would be selected at random and they 
would have to execute it. The 18 test lists comprised six examples of each of three types 
of lists: long and nearly inversely sorted, long and nearly-sorted, and short and nearly-
sorted (see Table 1). The order of these lists was randomized across participants. 

In the execution block, one of the 12 short lists from the choice block was selected 
at random, and the participant had to sort it using the strategy they had selected for it.  

Results 
Our participants completed the experiment in 24.7 ± 6.7 minutes (mean ± standard 
deviation). In the training phase, the median number of errors per list was 2.45, and 95% 
of our participants made between 0.73 and 12.55 errors per list. The most important 
outcome was the relative frequency of adaptive strategy choices: On average, our 
participants chose merge sort for 4.9 of the 6 long and nearly inversely sorted lists for 
which it was optimal, that is 81.67% of the time. To quantify our uncertainty about this 
and subsequent frequency estimates we computed credible intervals based on a uniform 
prior (Edwards, Lindman, & Savage, 1963). According to this analysis, we can be 95% 
confident that the frequency with which people used merge sort on long nearly inversely 
sorted lists lies between 77.8% and 93.0%. By contrast, our participants chose merge sort 
for only 1.79 of the 6 nearly-sorted long lists for which it was inferior to cocktail sort 
(29.83% of the time, 95% credible interval: [12.9%, 32.4%]), and for only 1.62 of the 6 
nearly-sorted short lists for which it was also inferior (27.00% of the time, 95% credible 
interval: [16.7%, 40.4%]); see Figure 3A. Thus, our participants chose merge sort 
significantly more often than cocktail sort when it was superior (𝑝 < 10b*®; Cohen’s 
𝑤 = 6.12). But, when merge sort was inferior, they chose it significantly less often than 
cocktail sort (𝑝 < 10b¯, Cohen’s 𝑤 = 6.33). Overall, 83% of our participants chose 
merge sort more often when it was the superior strategy than when cocktail sort was the 
superior strategy and vice versa (95% credible interval: [74.9%; 89.4%]; see Figure 3). 
The high frequency of this adaptive strategy choice pattern provides strong evidence for 
the hypothesis that people’s strategy choices are informed by features of the problem to 
be solved, because it would be extremely unlikely otherwise (𝑝 < 10b**, Cohen’s 𝑤 =
6.60). This finding was predicted by our rational metareasoning model of strategy 
selection which achieved adaptive strategy selection in 70.5% of the simulations (𝑝 <
10b*�) and the SCADS model with optimized categories and the VOC-based reward 
function (performance minus time cost) which achieved adaptive strategy selection in 
59.0% of the simulations (𝑝 < 10b°) but not by any of the other SCADS, RELACS, and 
SSL models (all 𝑝 ≥ 0.17). Figure 3A compares the proportion of participants who chose 
their sorting strategy adaptively with the models’ predictions. The non-overlapping 
credible intervals suggest that we can be at least 95% confident that people’s strategy 
choices were more adaptive than predicted by SSL, RELACS, or SCADS and a series of 
t-tests confirmed this interpretation (all 𝑝 < 0.001). While the frequency of adaptive 
strategy choices predicted by rational metareasoning (70.5 ± 3.2%) was also 
significantly higher than for any of the alternative models (all 𝑝 < 0.01), our participants 
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chose their strategies even more adaptively than our rational metareasoning model 
predicted (83.0% vs. 70.5%, 𝑡(298) = 2.34, 𝑝 = 0.01). Like people, rational 
metareasoning selected merge sort for significantly more than half of the lists that were 
long and inverted (	𝑝 < 10b±) but for significantly less than half of the lists that were 
long and presorted (𝑝 < 10b*°) or short and presorted (	𝑝 < 10b*°). As shown in Figure 
3B, none of the alternative models captured this pattern. 
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Figure 3: Pattern of strategy choices in Experiment 1. A: Percentage of participants who 
chose merge sort more often when it was superior than when it was not. Error bars 
indicate 95% credible intervals. The results for SCADS, SSL, and RELACS correspond 
to the version of the respective model that achieved the highest frequency of adaptive 
strategy selection. B: Relative frequency with which humans and models chose merge 
sort by list type. 
 

Our model has four components: i) choosing strategies based on their VOC by 
trading off expected performance versus expected cost, ii) learning to predict the 
performance of strategies from features of individual problems, iii) learning separate 
predictive models of computational effort and reward, and iv) meta-cognitive exploration 
by Thompson sampling.  To determine which components of our model are critical to its 
ability to choose strategies adaptively, we created additional models by removing each of 
the four components in turn. This resulted in five additional models: one rational 
metareasoning model without features, one rational metareasoning model without 
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exploration, two models that choose strategies based on criteria other than the VOC, and 
one model that approximated the VOC directly without learning to predict execution time 
and reward separately. The last three models use the same reward functions as the three 
instantiations of each of the previous theories of strategy selection learning: reward only, 
reward rate, and reward minus time cost; while the first two models choose strategies 
based on a criterion other than the VOC, the last model learns a model-free 
approximation to the VOC without learning to predict either deliberation time or 
accuracy. 

To evaluate these “lesioned” models, we simulated the sorting experiment 
according to each of them and measured how often the resulting strategy choices were 
adaptive (see Supplementary Figure 4 in the Online Supplementary Material). We found 
that the features and the VOC-based strategy selection mechanism were necessary to 
capture human performance. Exploration and learning separate predictive models for 
execution time and accuracy were not necessary to capture human performance in the 
sorting task, but they were necessary to capture human performance in the experiments 
simulated below; detailed statistical analyses are provided in the Online Supplementary 
Material.  

Discussion 
We evaluated rational metareasoning against three existing theories of human strategy 
selection. We found that the predictions of rational metareasoning were qualitatively 
correct and that its choices came close to human performance. By contrast, the nine 
alternative models instantiating previous theories completely failed to predict people’s 
adaptive strategy choices in our experiment: The RELACS and SSL models do not 
represent problem features and thus cannot account for people’s ability to learn how 
those features affect each strategy's performance. The basic associative learning 
mechanism assumed by SSL and RELACS was maladaptive in Experiment 1 because 
cocktail sort was faster for most training lists but substantially slower for the long, nearly 
inversely sorted test lists.  

The primary advantage allowing our model to perform better than SSL and 
RELACS is that it leverages problem features that distinguish the lists for which cocktail 
sort is superior from the lists for which merge sort is superior. If SSL and RELACS were 
applied two either set of lists separately, they would learn to identify the correct strategy 
for each of them. However, in the real world, problems rarely come with a single label 
that identifies the correct strategy. Instead, the correct strategy has to be inferred from a 
combination of multiple features (e.g., length and presortedness) none of which is 
sufficient to choose correct strategy on its own. Our rational metareasoning model 
handles this challenge but SSL and RELACS do not address it yet. 

 The SCADS model failed mainly because its associative learning mechanism was 
fooled by the imbalance between the training examples for cocktail sort and merge sort. 
Furthermore, the strategy selection component of the SCADS model can neither 
extrapolate nor capture the non-additive interaction between length and presortedness.  

Our findings suggest that people leverage the features of individual problems to 
learn how to select strategies adaptively. The success of the rational metareasoning model 
and its evaluation against lesioned metareasoning models suggests that our hypothesis 
that people learn to predict the VOC of alternative strategies from the features of 
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individual problems may be able to account for the adaptive flexibility of human strategy 
selection. 

In contrast to the sorting strategies in Experiment 1, most cognitive strategies 
operate on internal representations. In principle, strategies that operate on internal 
representations could be selected by a different mechanism than strategies that operate on 
external representations. However, there are two reasons to expect our conclusions to 
transfer: First, people routinely apply strategies that they have applied to external objects 
to their internal representations of those objects. For instance, mental arithmetic is based 
on calculating with fingers. Thus, the strategies people use to order things mentally might 
also be based on the strategies they use to sort physical objects. Second, strategy selection 
can be seen as an instance of metacognitive control, and metacognitive processes tend to 
be domain general. In the following sections, we show that our conclusions do indeed 
transfer to cognitive strategies that operate on internal representations. 

Cognitive flexibility in complex decision environments 
People are known to use a wide repertoire of different heuristics to make 

decisions under risk (Payne, Bettman, & Johnson, 1993). These strategies include fast-
and-frugal heuristics which, as the name suggests, perform very few computations and 
use only a small subset of the available information (Gigerenzer & Gaissmaier, 2011). 
For instance, the lexicographic heuristic (LEX) focuses exclusively on the most probable 
outcome that distinguishes between the available options and ignores all other possible 
outcomes. Another fast-and-frugal heuristic that people might sometimes use is 
Elimination-By-Aspects (EBA; Tversky, 1972). Here, we used the deterministic version 
of EBA described by Payne et al. (1988). This heuristic starts by eliminating options 
whose payoff for the most probable outcome falls below a certain threshold. If more than 
one option remains, EBA repeats the elimination process with the second most probable 
outcome. This process repeats until only one option remains or all outcomes have been 
processed. After the elimination step EBA chooses one of the remaining outcomes at 
random. In addition to fast-and-frugal heuristics, people’s repertoire also includes more 
time consuming but potentially more accurate strategies such as the weighted-additive 
strategy (WADD). WADD first computes each option’s expected value, and then chooses 
the option whose expected value is highest.  

In addition to gradually adapting their strategy choices to the structure of the 
environment (Rieskamp & Otto, 2007) people can also flexibly switch their strategy as 
soon as a different problem is presented. Payne et al. (1988) provided a compelling 
demonstration of this phenomenon in risky choice: Participants chose between multiple 
gambles described by their possible payoffs and their respective probabilities. There was 
a fixed set of possible outcomes that occurred with known probabilities and the gambles 
differed in the payoffs they assigned to these outcomes. Participants were presented with 
four types of decision problems that were defined by the presence or absence of a time 
constraint (15 seconds vs. none) and the dispersion of the outcomes' probabilities (low vs. 
high); high dispersion means that some outcomes are much more probable than others, 
whereas low dispersion means that all outcomes are almost equally likely. Ten instances 
of each of the four problem types were intermixed in random order. The outcomes’ 
payoffs ranged from $0 to $9.99, and their values and probabilities were stated 
numerically. Payne et al. (1988) used process tracing to infer which strategies their 
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participants were using: The payoffs and their probabilities were revealed only when the 
participant clicked on the corresponding cell of the payoff matrix displayed on the screen, 
and all mouse clicks were recorded. This allowed Payne and colleagues to measure how 
often people used the fast-and-frugal heuristics (LEX and EBA) for different types of 
problems by the percentage of time people spent on the options' payoffs for the most 
probable outcome. For the expected-value strategy WADD this proportion is only 25%, 
but for the fast-and-frugal heuristics LEX and EBA it can be up to 100%. The 
experiment revealed that people adaptively switch decision strategies in the absence of 
feedback: When the dispersion of outcome probabilities was high, people focused more 
on the most probable outcome than when all outcomes were almost equally probable. 
Time pressure also increased people's propensity for such selective and attribute-based 
processing; see Figure 4. Thus, participants appeared to use fast-and-frugal heuristics 
more frequently when they had to be fast and when all but one or two outcomes were 
extremely improbable. This makes sense because the fast-and-frugal heuristics LEX and 
EBA are fast precisely because they focus on the most predictive attributes instead of 
integrating all attributes. 

We investigated whether rational metareasoning can account for people’s 
adaptive flexibility in this experiment. To do so, we simulated the experiment by 
applying our model to the selection between the ten decision strategies considered by 
Payne et al. (1988) including WADD and fast-and-frugal heuristics such as LEX and 
EBA. To simulate each strategy’s execution time we counted how many elementary 
operations (Johnson & Payne, 1985) it would perform on a given problem and assumed 
that each of them takes one second. This allowed us to simulate the effect of the time 
limit on a strategy’s performance by having each strategy return its current best guess 
when it exceeds the time limit (Payne et al., 1988). For the purpose of strategy selection 
learning, our model represented each decision problem by five simple and easily 
computed features: the number of possible outcomes, the number of options, the number 
of inputs per available computation, the highest outcome probability, and the difference 
between the highest and the lowest payoff. Our model used these features to learn a 
predictive model of each strategy's relative reward 

𝑟rel 𝑠; 𝑜 =
𝑉 𝑠 𝐷 , 𝑜
max
´
𝑉 𝑎, 𝑜 	, 

where 𝑠(𝐷) is the gamble that strategy 𝑠 chooses in decision problem 𝐷, 𝑉(𝑐, 𝑜) is the 
payoff of choice 𝑐 if the outcome is 𝑜, and the denominator is the highest payoff the 
agent could have achieved given that the outcome was 𝑜. To choose a strategy, the 
predicted relative reward 𝑟rel is translated into the predicted absolute reward 𝑟 by the 
transformation 

𝑟 = min{𝑟RZY + 𝑟R´¹ − 𝑟RZY ⋅ 𝑟º¢n, 𝑟R´¹}, 
where 𝑟RZY  and 𝑟R´¹ are the smallest and the largest possible payoff of the current 
gamble respectively. The model then integrates the predicted absolute reward and the 
predicted time cost into a prediction of the strategy’s VOC according to Equation 2 and 
chooses the strategy with the highest VOC as usual. The priors on all feature weights of 
the score and execution time models were standard normal distributions.  The simulation 
assumed that people knew their opportunity cost and did not have to learn it from 
experience. Rather than requiring the model to learn the time cost as outlined above, the 
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opportunity cost was set to $7 per hour and normalized by the maximum payoff ($10) to 
make it commensurable with the normalized rewards.  

To compare people’s strategy choices to rational metareasoning, we performed 
1000 simulations of people's strategy choices in this experiment. In each simulation, we 
modeled people's prior knowledge about risky choice strategies by letting our model 
learn from ten randomly generated instances of each of the 144 types of decision 
problems considered by Payne et al. (1988). We then applied rational metareasoning with 
the learned model of the strategies' execution time and expected reward to a simulation of 
Experiment 1 from Payne et al. (1988). On each simulated trial, we randomly picked one 
of the four instances and generated the payoffs and outcome probabilities according to 
the problem type: Outcome distributions with low dispersion were generated by sampling 
outcome probabilities independently from the standard uniform distribution and dividing 
them by their sum. Outcome distributions with high dispersion were generated by 
sampling the outcome probabilities sequentially such that the second largest probability 
was at most 25% of the largest one, the third largest probability was at most 25% of the 
second largest one, and so on. Since the participants in this experiment received no 
feedback, our simulation assumed no learning during the experiment. 

To evaluate our theory against alternative hypotheses, we also ran 1000 
simulations according to SCADS.  To evaluate our theory against alternative hypotheses, 
we also ran 1000 simulations according to the SCADS model. We did not evaluate SSL  
or RELACS because these theories do not distinguish different kinds of problems and 
hence cannot account for the phenomena observed by Payne et al. (1988). 

The SCADS model was equipped with nine categories (time pressure, no time 
pressure, many options (> 3), few options (≤ 3), many possible outcomes (> 3), few 
possible outcomes (≤ 3), high stakes (range of payoffs ≥ 50% of highest payoff), low-
stakes (range of payoffs ≤ 10% of highest payoff), and non-compensatory (largest 
outcome probability > 0.5)). As before, we considered three instances of SCADS whose 
reward functions were either the relative payoff, the relative payoff minus the opportunity 
cost of the strategy’s execution time, or the reward rate. The SCADS model’s category-
specific and global strategy-reward associations were initialized with strengths equivalent 
to one observation per strategy. 

We found that rational metareasoning correctly predicted that time-pressure and 
probability dispersion increase people's propensity to use the fast-and-frugal heuristics 
LEX and EBA; see Figure 4. Time pressure increased the predicted frequency of fast, 
attribute-based processing by 29.69% (𝑡 1998 = 9.70, 𝑝 < 10b*°), and high dispersion 
of the outcome probabilities increased the predicted frequency of fast, attribute-based 
processing by 44.11% (𝑡 1998 = 14.41, 𝑝 < 10b*°). Furthermore, their strategy 
choices only change in response to reward or punishment but the experiment provided 
neither. The SCADS model can choose strategies adaptively in principle, but in our 
simulations its strategy choices were dominated by the global, problem-independent 
associations. Consequently, our SCADS models always converged onto a single strategy 
during the training phase and continued to do so in the test trials. Hence, the predicted 
effects of time pressure (−0.1 to 0%, all 𝑝 ≥ 0.4955) and dispersion (0% to 0.05%, all 
𝑝 ≥ 0.4978) were not significantly different from zero. In conclusion, rational 
metareasoning can account for adaptive flexibility in decision-making under risk but 
SSL, RELACS, and SCADS cannot. These results suggest that rational metareasoning 
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can capture the adaptive flexibility of people’s strategy choices not only for behavioral 
strategies that manipulate external representations but also for cognitive strategies that 
operate on internal representations. 

 

 
Figure 4: Rational metareasoning predicts the increase in selective attribute-based 
processing with dispersion and time pressure observed by Payne et al. (1988). 

 
To evaluate which components of rational metareasoning are critical to capture 

people’s adaptive decision-making, we lesioned our model by separately removing each 
of its four components. We found that the feature-based problem representations and 
exploration were critical to the model’s adaptive strategy choices but learning separate 
models of the costs and benefits and choosing strategies based on the VOC was not; for 
more detail see Appendix B. Although learning about the time cost was not necessary to 
perform well in the experiment by Payne et al. (1988), there are other scenarios, such as 
the sorting experiment, where this is critical.  

Rational strategy selection is learned from experience 
In the previous sections, we have shown that our feature-based strategy selection 

model can explain people’s ability to choose cognitive and behavioral strategies to 
flexibly adapt how they process information to the requirements of their current situation. 
According to our theory, people acquire this ability by learning an internal predictive 
model of each strategy’s performance. In this process, people should gradually learn to 
perform more valuable computations and fewer computations whose costs outweigh their 
benefits. In other words, people should learn to make increasingly more rational use of 
their finite time and computational resources. This hypothesis makes four predictions: 
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1. People learn to perform fewer computations whose time cost outweighs the 
resulting gain in decision quality. 

2. People learn to perform more computations whose expected gain in decision 
quality outweighs their time cost. 

3. Ecological rationality increases with learning: people gradually learn to adapt 
their strategy choices to the structure of their environment. 

4. Adaptive flexibility increases with learning: people learn to use different 
strategies for different kinds of problems. 

We test these predictions in the remainder of this section. 

Experiment 2: When people think too much they learn to think less 
The goal of Experiment 2 was to test our model’s prediction that people will learn to 
deliberate less and decide more quickly when they are placed in an environment where 
the cost of deliberation outweighs its benefits. 

Methods. We recruited 100 adult participants on Amazon Mechanical Turk. 
Participants were paid $0.75 for 15 minutes of work and could earn a bonus of up to $2 
for their performance on the task; the average bonus was $1.15 and its standard deviation 
was $0.73. The experiment was structured into three blocks: a pretest block, a training 
block, and a posttest block. Participants received feedback about the outcomes of their 
choices in the training block but not in pretest or the posttest block. Each block lasted 
four minutes, and the participants’ task was to win as many points as they could.  

 
Figure 5: Screenshot of example trial in the pretest phase of Experiment 2. 
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 Figure 5 shows a screenshot of an example trial in the pretest phase. In each trial, 
participants were shown a number of gambles. They could either choose one of the 
gambles or skip the decision and move on to the next trial without receiving a payoff. As 
soon as the participant responded the next trial was shown. The number of trials was 
solely determined by how quickly the participant responded on each trial. On each trial, 
the decision problem was equally likely to belong to either of the four types summarized 
in Table 2. The four problem types differed primarily in the range of possible payoffs 
(low stakes, vs. high stakes, vs. all positive, vs. all negative), and on each trial this range 
was shown as a cue (see Figure 5). Critically, as shown in Table 2, the problem types and 
their frequencies were chosen such that the best approach was to skip trials where all 
outcomes were negative, choose randomly on trials where all outcomes were positive, 
and minimize the time spent on the high-stakes and the low-stakes problems by choosing 
randomly or skipping them altogether. 

 
Table 2 

Frequency and properties of the four types of decision problems used in Experiment 2.  

Problem Type Frequency Worst Outcome Best Outcome Optimal Strategy 
All great 25% 990 1010 random choice 
All bad 25% -1010 -1000 Disengagement 
High Stakes 25% -1000 1000 Disengagement 
Low Stakes 25% -10 10 Disengagement 

 
Note: All gambles were compensatory.  
 

 
 The number of outcomes was 3, 4, or 5 with probability 0.25, 0.50, and 0.25 

respectively. The number of gambles was either 4 or 5 with equal probability. Given the 
number of outcomes and gambles, the payoffs were sampled uniformly from the problem 
type’s range of payoffs given in Table 2. The outcome probabilities were sampled 
independently from the payoffs. Concretely, if there were k outcomes, then the first 𝑘 − 1 
outcome probabilities were sampled by a stick-breaking process where the relative length 
of each new stick was sampled from a uniform distribution. The probability of the 𝑘-th 
outcome was set to 1 minus the sum of the first 𝑘 − 1 probabilities.  

Model Predictions. To simulate people’s choice of decision strategies and how it 
changes with learning, we combined our rational process model of strategy selection 
learning with the 10 decision strategies considered by Payne et al. (1988): the weighted-
additive strategy, the equal weight strategy, satisficing, choosing at random, the majority 
of confirming dimensions strategy, the lexicographic heuristic (take-the-best), the semi-
lexicographic heuristic, elimination-by-aspects, as well as two hybrid strategies that 
combine elimination-by-aspects with the weighted-additive strategy and the majority of 
confirming dimensions strategy respectively. Two additional strategies allowed the 
decision-maker to choose at random and skip the trial without deliberation respectively. 
The model’s prior on the reward rate was a normal distribution with a mean of 1 point per 
second and a precision equivalent to 1 minute’s worth of experience in the task. The 
priors on the regression coefficients and the error variance of the agent’s predictive 
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model of the strategies’ performance were the same as in the simulations of the 
experiment by Payne et al. (1988).  The features of the agent’s predictive model 
combined those used to simulate the experiment by Payne et al. (1988) with four 
indicator variables signaling the presence or absence of the cues associated with the four 
types of gambles.  Using these parameters, we ran 200 simulations of the experiment 
according to each model.  
A 

 
B 

 
Figure 6: Experiment 2: Learning when not to engage in effortful decision-making. A: 
Predictions of rational metareasoning for Experiment 2. B: The empirical findings of 
Experiment 2 confirmed the three qualitative model predictions. 

Pretest Training Posttest
0

100

200

R
ew

ar
d 

R
at

e
(p

ts
/s

ec
)

Pretest Training Posttest
0

5

10

#A
cq

ui
si

tio
ns

Pretest Training Posttest
0

20

40

60

En
ga

ge
m

en
t i

n 
%



STRATEGY SELECTION AS RATIONAL METAREASONING 
 

29 

 
As shown in Figure 6A, our rational model predicted that participants should 

learn to decide more quickly and thereby win increasingly more points per second by 
engaging in deliberation less often and acquiring fewer pieces of information. Since the 
simulated decision-maker estimates its reward rate by Bayesian inference as defined 
above, it gradually realizes that its opportunity cost is very high. In addition, the 
simulated decision-maker learns that deliberate strategies are slow, and that the random 
strategy performs about as well as deliberation when all outcomes are similar. Hence, the 
simulated decision-maker eventually learns to avoid deliberating, to skip problems with 
negative payoffs, and to apply the random strategy when all outcomes are great. 

Results. To test our hypothesis that people learn to deliberate less, we classified 
the participants’ response patterns into three categories: The response strategy on a trial 
was categorized as random choice if the participant chose one of the gambles without 
inspecting any of the outcomes. If the participant chose “No thanks!” without inspecting 
the outcomes, then the response strategy was classified as disengaged. Finally, if the 
participant clicked on at least one of the outcome boxes, then the response was 
categorized as engaged. We measured our participants’ performance on the task by three 
metrics: engagement, reward rate, and adaptive randomness. Engagement was defined as 
the proportion of trials on which participants were engaged; the reward rate is the number 
of points earned per second; and adaptive randomness was measured by the frequency of 
random choice in problem type 1 (all great) minus the frequency of random choice on 
problems of types 2 (all bad) and 3 (high stakes); see Table 2. Our model predicted that 
participants’ reward rate and adaptive randomness would increase significantly from the 
pretest to the posttest while their engagement decreases. 

As shown in Figure 6B, we found that the learning induced changes in our 
participants’ strategy choices were consistent with our theory’s predictions. There was a 
significant increase in the participants’ average reward rate (𝑡 99 = 9.98, 𝑝 < 10b*°; 
Cohen’s 𝑑 = 1.00) as they learned to process less information (𝑡 99 = −4.80, 𝑝 <
10b°; Cohen’s 𝑑 = −0.48) and their engagement decreased significantly (𝑡 98 =
−7.89, 𝑝 < 10b**; Cohen’s 𝑑 = −0.79). Even though participants acquired increasingly 
less information, their average reward per decision did not change significantly from the 
first block to the last block (𝑡 98 = 0.69, 𝑝 = 0.49; Cohen’s 𝑑 = 0.07). 

 To examine whether the effect of learning on the number of computations 
performed by our participants depended on the problem type we ran a 2x2 mixed-effects, 
repeated-measures ANOVA with the average number of information acquisitions for a 
given problem type in a given block as the dependent variable and the problem type and 
the block number as independent variables. The main effect of the problem type was 
significant (𝐹 3,1184 = 23.01, 𝑝 < 10b*�) suggesting that participants’ information 
acquisition strategies differed significantly between the four types of decision problems 
(see Figure 7A): In high-stakes decisions, participants inspected 2.95 ± 0.55 outcomes 
on average, but on the trials where all outcomes were equally bad they inspected only 
about 0.5 potential payoffs (Cohen’s 𝑑 = 1.96). For low-stakes decisions and decisions 
in which all possible outcomes were great participants inspected an intermediate number 
of outcomes (about 1.5 inspected outcomes on average, Cohen’s 𝑑 = 1.21 and 𝑑 = 1.18 
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respectively). The number of information acquisitions changed significantly across the 
three blocks of the experiment (𝐹 1,1184 = 23.64, 𝑝 < 10b°). Concretely, information 
acquisition decreased by 1.4 pieces of information per block (𝑡 1184 = −4.86, 𝑝 <
10b±; Cohen’s 𝑑 = −0.14). There was a statistically significant interaction between 
problem type and block number (𝐹 3,1184 = 4.74, 𝑝 = 0.003) indicating that the 
number of information acquisitions decreased more strongly for some problem types than 
for others. This decrease was statistically significant for problems in which all outcomes 
are great (𝑡 99 = −3.30, 𝑝 < 0.001, Cohen’s 𝑑 = −0.33), problems in which all 
outcomes are bad (𝑡 99 = −5.15, 𝑝 < 10b±, Cohen’s 𝑑 = −0.52), and the high-stakes 
decision problems (𝑡 99 = −5.06, 𝑝 < 10b±, Cohen’s 𝑑 = −0.51). But for the low-
stakes problems the decrease was weaker and not statistically significant (𝑡 99 =
−1.50, 𝑝 = 0.07, Cohen’s 𝑑 = −0.15). 

The observed decrease in the number of information acquisitions was partly 
driven by a decrease in the frequency with which people engaged with the decision 
problems by inspecting at least one of their payoffs. As shown in Figure 7A, the 
proportion of decision problems in which people inspected at least one of the payoffs 
dropped from 37% in the pretest to 19% in the posttest. To test whether learning 
decreased the number of computations that people perform above and beyond the effect 
of disengagement, we repeated the analysis of variance described above for only those 
trials on which people engaged with the decision problem (see Figure 7B). We found that 
the main effect of the block number was still highly significant (𝐹 1,659 = 8.08, 𝑝 =
0.005).  The estimated decrease in information acquisition on trials on which people 
engaged with the decision problem was 1.1 pieces of information per block (95% CI: 
[−1.80	, −0.33], 𝑡 659 = −2.84, 𝑝 = 0.005, Cohen’s 𝑑 = −0.11) and this value was 
not significantly different from the average decrease across all trials (1.4 
acquisitions/block, 95% CI: [−1.60, −0.68]). There was also a significant interaction 
between the block number and problem type (𝐹 3,659 = 2.61, 𝑝 = 0.05).  

Furthermore, we found a significant increase in adaptive randomness (𝑡 97 =
7.21, 𝑝 < 10b*®, Cohen’s 𝑑 = 0.73). This means that our participants learned to 
selectively apply the random choice strategy to the all great problems (see Figure 7C). 
Consistent with this finding, the frequency of random choice increased on the all great 
trials (𝑡 97 = 6.61, 𝑝 < 10b½, Cohen’s 𝑑 = 0.67) but decreased on all other trial types 
(𝑡 98 = −2.77, 𝑝 = 0.003, Cohen’s 𝑑 = −0.28). 

Finally, we investigated whether people learn to prioritize the most probable 
outcome over less probable outcomes. To do so, we recorded the rank of the probability 
of the outcome participants inspected first and averaged it by block. The rank of the most 
probable outcome is one, the rank of the second most probable outcome is two, etc. On 
average, people inspected the second most probable outcome first. This is consistent with 
the interpretation that our participants sometimes used strategies that prioritize the most 
probable outcomes and sometimes used strategies that do not. There was a very small and 
almost statistically significant decrease in the rank of the probability of the outcome 
inspected first from 2.33 ± 0.05 in the pretest to 2.15 ± 0.08 in the posttest (𝑡 59 =
−1.67, 𝑝 = 0.05; Cohen’s 𝑑 = 0.22). 
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Figure 7: Adaptive disengagement in Experiment 2. A: Average number of 

information acquisitions by block and problem type. B: Number of information 
acquisitions when engaged. C: Adaptive randomness increased as participants learned to 
apply the random choice strategy more often to problems where all outcomes were great 
and less often to other problems. 

 
In summary, Experiment 2 placed participants in an environment where 

maximizing the reward rate required choosing without deliberation, and the participants 
learned to reap increasingly higher reward rates by acquiring increasingly fewer pieces of 
information, choosing at random when all outcomes were great and to skipping all other 
problems. There was also a trend towards learning to prioritize the most probable 
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outcome. All of these effects are consistent with the hypothesis that people learn to make 
increasingly more rational use of their finite time and computational resources. 

Model Comparisons.  While our findings were qualitatively consistent with the 
model predictions there were quantitative differences: People tended to outperform the 
model in terms of the reward rate in the pretest block, and their average number of 
acquisitions and frequency of engaging in deliberation changed less than predicted by 
rational metareasoning (compare Figure 6A vs. Figure 6B, and see the Supplementary 
Online Material for a more detailed comparison).  

To evaluate our rational metareasoning model against the 14 alternative models 
described above, we ran 200 simulations of Experiment 2 according to each of the 
models. For each model, we performed six one-sample t-tests to determine whether it 
captured the increase in reward rate, the decrease in the number of acquisitions, and the 
decrease in the frequency of engagement from block 1 to block 2 and from block 2 to 
block 3, and one t-test to evaluate whether the model captured that people acquired more 
pieces of information on high-stakes problems than on other kinds of problems.  We 
found that while our rational metareasoning model captured all of these effects, none of 
the SCADS, RELACS, or SSL models were able to capture all four effects 
simultaneously.  The only component of the metareasoning model that was not necessary 
to capture human performance in Experiment 2 were the features. The reason why the 
lesioned metareasoning model without features could perform well is that the explicitly 
stated payoff ranges were sufficient for choosing strategies adaptively. Critically, none of 
the other lesioned metareasoning models were able to capture human performance. This 
suggests that all other components of our rational metareasoning model—choosing 
strategies based on the VOC, exploration, and learning separate predictive models of 
execution time and reward—are necessary to capture people’s ability to adapt to the 
decision environment of Experiment 2. For a more detailed summary of these simulation 
results, please see Appendix B. 
 Discussion. The observation that sometimes people are cognitive misers poses a 
challenge to most rational models, but our model predicted it correctly. According to our 
model, people become faster and less accurate at a challenging task when the difference 
between the rewards for good versus bad performance is small compared to how much 
time it would take to perform better. The observation that over time participants came to 
engage less with all four types of problems could also be interpreted as a general 
disengagement from the experiment rather than a rational adaptation to the structure of 
the decision environment. To disambiguate rational adaptation from disengagement we 
designed an additional experiment in which our theory predicts that people should learn 
to invest increasingly more time and effort. 

Experiment 3: Learning to deliberate more 
The goal of Experiment 3 was to test our model’s prediction that people learn to 

deliberate more when they initially think too little. To create a situation where people 
think too little, we first put them in an environment whose reward rate was so high that 
deliberating on low-stakes problems was a waste of time and then changed the 
environment so that low-stakes problems became the only opportunity to earn money.  

Methods. We recruited 201 adult participants on Amazon Mechanical Turk. 
Participants were paid $0.75 for participation and could earn a performance-dependent 
bonus of up to $2. After performing the task participants completed an attention check 
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that required them to estimate the highest possible payoffs of the different types of games 
they played in the experiment. Participants were excluded if they reported a positive 
number for the gamble that had only negative outcomes, if their estimate for the high-
stakes gamble (±100) was less than twice their estimate for the low-stakes gamble 
(±10), or if any of their estimates was larger than 500. Based on these criteria, we had to 
exclude 57 participants (28.36%). In the experiment, participants visited a virtual casino 
that offered three different kinds of games: In Blue Mountain Games the stakes were high 
(±100). In Purple Sun Games the stakes were low (±10), and in Orange Diamond 
games all outcomes were negative ([−100;−90]). Each type of game was associated 
with a logo. The instructions informed participants that there were three kinds of games 
and what their payoffs were. In contrast to Experiment 2, the range of possible outcomes 
was not stated explicitly on every trial; instead they had to be inferred from the game’s 
logo. Figure 8 shows a screenshot from Experiment 3.  

 
Figure 8: Screenshot from Experiment 3. 
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The experiment was structured into five blocks lasting 2.5 minutes each. The first 
and the second block had a high reward rate. They comprised 50% high-stakes problems 
and 50% low-stakes problems. Blocks 3-5 were the pretest, the training, and the posttest 
block respectively, and they all had the same structure. In each of these blocks, the first 
four trials were low-stakes problems (±10 points) and the remaining trials comprised 
75% trials with only negative outcomes ([−100,−90]) and 25% low-stakes problems. 
Hence, starting with the pretest block, low-stakes decisions became the only opportunity 
to win points and the opportunity cost for engaging in them became negligible. In all 
decision problems presented in Experiment 3, identifying the optimal choice required 
integrating multiple attributes. The number of gambles was always five, and the number 
of outcomes was always four. The payoffs were sampled uniformly from the range 
associated with the problem and their probabilities were determined as in Experiment 2.  
In contrast to Experiment 2, participants could not skip trials but always had to choose a 
gamble to advance. 

 We ran 200 simulations of this experiment using the same strategies and 
parameters as for Experiment 2 except that the agent did not have the option to skip trials. 
Rational metareasoning predicted that starting from the pretest (block 3), participants will 
learn to reap increasingly higher reward rates by engaging more often in the now 
worthwhile low-stakes problems and acquire increasingly more information to make 
those choices (see Figure 9). 

 

 
Figure 9: Rational metareasoning predictions of strategy selection learning in Experiment 
3. A: Rational metareasoning predicted a significant increase in the reward rate from the 
pretest (block 3) to the posttest (block 5). B: Rational metareasoning predicted a 
significant increase in the number of information acquisitions on the worthwhile low-
stakes problems. C: Rational metareasoning predicted a significant increase in people’s 
engagement with the worthwhile low-stakes problems. 
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Figure 10: Empirical Results of Experiment 3. A: Reward rate by block. Error bars 
denote plus and minus one SEM. B: Average number of information acquisitions. C: 
Engagement in low-stakes decisions. 

Results and Discussion. First, we quantified learning by the change in our 
participants’ average reward rate from the pretest to the posttest. The increase in people’s 
average reward rate from −2.00 ± 0.24 in the pretest to −1.16 ± 0.23 in the posttest was 
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statistically significant according to a one-sided t-test (𝑡 143 = 2.87, 𝑝 = 0.002; 
Cohen’s 𝑑 = 0.26). The reward rate depends on two factors: the reward per decision and 
the number of decisions per minute. To determine which of the two factors was 
responsible for the increase, we analyzed the learning induced changes in each factor 
separately. First, we analyzed how the reward per decision changed from the pretest to 
the posttest. For low-stakes problems the reward increased significantly from about 1.93 
points per decision to about 2.42 points per decision (𝑡 143 = 1.92, 𝑝 = 0.03; Cohen’s 
𝑑 = 0.16). By contrast, for problems on which all outcomes were negative the average 
reward did not change significantly (−14.43 vs. −14.22, 𝑡 96 = 1.08, 𝑝 = 0.14; 
Cohen’s 𝑑 = 0.11). Next, we analyzed potential changes in the second factor: the number 
of decisions per unit time. We found that participants slowed down significantly from 
12.86 ± 1.42 decisions per minute in the pretest to 8.32 ± 1.45 decisions per minute in 
the posttest (𝑡 143 = 2.99, 𝑝 = 0.003; Cohen’s 𝑑 = 0.25). Hence, participants learned 
to reap a higher reward rate by deliberating more to make better decisions.  
 To test the hypothesis that deliberation increased with learning more rigorously, 
we analyzed the number of information acquisitions as a proxy for the number of 
computations performed by our participants. Concretely, we tested our model’s 
prediction that people should learn to invest more computation into low-stakes decisions. 
As shown in Figure 10A, participants learned to allocate their time adaptively.  Starting 
from the pretest (block 3)—where low-stakes problems became worthwhile solving—
there was a significant increase in the number of information acquisitions on the low-
stakes problems from 4.97 ± 0.34 to 6.42 ± 0.43 (𝑡 2798 = 5.19, 𝑝 < 0.001; Cohen’s 
𝑑 = 0.10). This increase was specific to the low-stakes problems: It did not occur for 
problems with only negative outcomes. To the contrary, on problems with only negative 
outcomes the number of information acquisitions decreased from 2.95 ± 0.24 to 2.51 ±
0.26 (𝑡 5112 = −2.38, 𝑝 = 0.02; Cohen’s 𝑑 = 0.03). This suggests that people 
learned to allocate their computation more adaptively from the pretest to the posttest. The 
number of information acquisitions was particularly high on the first four trials of the 
three last blocks: the number of information acquisitions increased from 8.19 ± 0.51 in 
the pretest to 9.27±0.50 in the posttest (𝑡 143 = 2.14, 𝑝 = 0.02; Cohen’s 𝑑 = 0.18). 

The observed increase in the number of information acquisitions on low-stakes 
problems might be caused by an increase in the frequency with which people engaged 
with them, an increase in the number of computations they invested into solving those 
they engaged with, or both. We found that the increase in the number of information 
acquisitions per problem was mostly driven by an increase in the frequency with which 
people engaged in effortful decision making on low-stakes problems (see Figure 10B): 
the frequency of engagement in low-stakes problems increased from only 49.1 ± 0.2% in 
the pretest to 58.95 ± 2.8% in the posttest (𝜒\ 2 = 26.9, 𝑝 < 0.001; Cohen’s 𝑤 =
5.19).  This increase was accompanied by a decrease in the frequency with which 
participants chose randomly which was the only way to avoid engaging with the problem. 
Importantly, we also found that the number of inspected outcomes increased even on the 
low-stakes problems that participants engaged with (10.14 in the pretest versus 10.89 
acquisitions in posttest, 𝑡 1490 = 2.07, 𝑝 = 0.04; Cohen’s 𝑑 = 0.05). On the 
problems with only negative outcomes, by contrast, there was a significant decrease in 
the number of information acquisitions (𝑡 1291 = −8.52, 𝑝 < 0.001;	Cohen’s 𝑑 =
−0.24). In conclusion, the increase in the number of information acquisitions on low-
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stakes problems was driven by both factors: our participants learned to engage in low-
stakes decisions more frequently and to deliberate more when engaged. Both changes are 
consistent with learning to become more resource-rational. Finally, we also found that 
people gradually learn to prioritize the most probable outcomes. The average rank of the 
outcome that participants inspected first significantly decreased from 2.36 ± 0.07 in the 
first block to 2.18±0.11 in the last block (𝑡 133 = 3.96, 𝑝 < 0.001; Cohen’s 𝑑 =
0.34). This learning process occurred even though identifying the optimal decision 
always required inspecting multiple outcomes. 

As for Experiment 2, the predictions of our rational model were qualitatively 
correct, but the observed learning effects were slightly smaller than expected. The model 
achieved a slightly higher reward rate than people (cf. Figure 9A vs. Figure 10A), 
acquired about 0.5—3 additional pieces of information (cf. Figure 9B vs. Figure 10B), 
and engaged in 20%—30% more problems than people (cf. Figure 9C vs. Figure 10C). In 
summary, we found that people learn to deliberate more and gather more information 
when the reward structure of their environment calls for it. This result complements the 
finding from Experiment 2 where people learned to invest less computation because the 
return on investing deliberation was less than their opportunity cost. In conclusion, our 
results suggest that strategy selection learning makes people more resource-rational by 
tuning strategy choices towards the optimal speed-accuracy tradeoff.  

Model Comparisons. For the purpose of model comparison, we ran 200 
simulations of Experiment 3 according to each of the 14 alternative models described 
above. For each model, we performed six one-sample t-tests to determine whether it 
correctly predicted the increases in reward rate, information acquisitions, and the 
frequency of engagement that occurred from block 3 to block 4 and from block 4 to block 
5, as well as one t-test to evaluate whether the model captured that people gathered more 
information on high-stakes problems than on other kinds of problems. We found that 
while our rational metareasoning model captured all of these effects, none of the SCADS, 
RELACS, or SSL models was able to capture these four effects simultaneously. Among 
the lesioned metareasoning models, only the one approximating the VOC by model-free 
reinforcement learning from the difference between reward and time cost captured all 
four phenomena. Critically, none of the other lesioned metareasoning models were able 
to do so. This suggests that choosing strategies based on the VOC, exploration, and 
feature-based learning are necessary to capture the adaptive strategy selection learning 
our participants demonstrated in Experiment 3. Hence, only the full rational 
metareasoning model can capture the findings from Experiments 2 and 3 simultaneously. 
For a more detailed summary of these simulation results, please see Appendix B. 

According to our rational theory of strategy selection, the reason why some 
people are cognitive misers in certain tasks (Toplak, West, & Stanovich, 2013) is that 
their metacognitive model predicts that the reward for normative performance is just not 
worth the effort it would require. The results of Experiment 2 suggest that cognitive 
misers will often learn to deliberate more when the returns of deliberation justify its cost. 

Ecological rationality increases with learning  
The third prediction of our model is that people adapt their strategy choices to the 

structure of their environment. To evaluate this prediction, we examined a concrete 
example where people can use two different strategies to choose between two options 
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with multiple attributes5: the comprehensive Weighted-Additive-Strategy (WADD) 
versus the fast-and-frugal heuristic Take-The-Best (TTB). There are different variants of 
the WADD strategy. Since we will be modeling a multi-attribute binary choice task, we 
use the version of WADD that sums up the weighted differences between the first 
option’s rating and the second option’s rating across all attributes (Tversky, 1969). For 
each attribute this strategy compares the two ratings (1 operation). If the attribute values 
disagree, then it reads and adds or subtracts the attribute’s validity (2 operations). Finally, 
it chooses the first attribute if the sum is positive or the second attribute if the sum is 
negative (1 operation).  TTB is the equivalent of the lexicographic heuristic for multi-
attribute decisions: it chooses the option that is best on the most predictive attribute that 
distinguishes between the options and ignores all other attributes. Our implementation of 
Take-The-Best first searches for the most predictive attribute by sequentially reading the 
validities of unused attributes (1 operation per attribute), comparing them to the highest 
validity found so far (1 operation per attribute), and memorizes the new validity if it 
exceeds the previous maximum (1 operation). Once the most predictive attribute has been 
identified, TTB compares the options’ ratings on that attribute (1 operation), and then 
either makes a choice (1 operation), or continues with the next most predictive attribute. 

 TTB works best when the attributes’ predictive validities fall off so quickly that 
the recommendation of the most predictive attribute cannot be overturned by rationally 
incorporating additional attributes; environments with this property are called non- 
compensatory. By contrast, TTB can fail miserably when no single attribute reliably 
identifies the best choice by itself; and environments with this property are called 
compensatory. Thus, to adapt rationally to the structure of their environment, that is to be 
ecologically rational, people should select TTB in non-compensatory environments and 
avoid it in compensatory environments. 
 Bröder (2003) found that people use TTB more frequently when their decision 
environment is non-compensatory. Rieskamp and Otto (2006) found that this adaptation 
might result from reinforcement learning. In their experiment participants made 168 
multi-attribute decisions with feedback. In the first condition, all decision problems were 
compensatory, whereas in the second condition all decision problems were non-
compensatory. To measure people’s strategy use over time, Rieskamp and Otto (2006) 
analyzed their participants’ choices on trials where TTB and WADD made opposite 
decisions. Participants in the non-compensatory environment learned to choose in 
accordance with TTB increasingly more often, whereas participants in the compensatory 
environment learned to do so increasingly less often.  

These findings raise the question of how people learn when to use TTB. One 
hypothesis is that people learn how well TTB works on average, as postulated by the SSL 
model (Rieskamp & Otto, 2006). Our alternative hypothesis is that people learn to predict 
how fast and how accurate TTB and alternative strategies will be on individual problems 
based on problem features, as postulated by rational metareasoning. To test these two 
hypotheses against each other, we simulated Experiment 1 from Rieskamp and Otto 
(2006) according to rational metareasoning and SSL and compared how well the models’ 
predictions explained the data. The experiment was divided into seven blocks. Each block 
comprised 24 trials, and each trial presented a choice between two investment options 

                                                
 5 A preliminary version of these simulations appeared in Lieder and Griffiths (2015).  
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with five binary attributes. The attributes’ predictive validities were constant and 
explicitly stated. Both models assumed that participants in this experiment always choose 
between Take-The-Best (𝑠* = TTB) and the weighted-additive strategy (𝑠\ = WADD). 
Our rational metareasoning model of this paradigm assumed that strategy selection in 
binary multi-attribute decisions relies on three features f = 𝑓*, 𝑓\, 𝑓� : the predictive 
validity of the most reliable attribute that discriminates between the two options (𝑓*), the 
gap between the validity of the most reliable attribute favoring the first option and the 
most reliable attribute favoring the second option (𝑓\), and the absolute difference 
between the number of attributes favoring the first option and the second option 
respectively (𝑓�). Our model assumes that people first inspect the validities of all cues 
and extract the three features 𝑓*,⋯ , 𝑓� from them, then select a strategy based on these 
features, and finally execute that strategy to reach a decision.6  
 The probability that a strategy 𝑠 makes the correct decision (𝑅 = 1) was modeled by 

𝑃(𝑅 = 1|𝑠, 𝒇) =
1

1 + exp − 𝑏q + 𝑤q,Z ⋅ f6Z

. 

We modeled people's knowledge about the feature weights 𝑤q by the prior distribution  

𝑃 𝑤q = 𝒩 𝜇 =
0
0
0

, 𝛴b* = 𝜏 ⋅
1 0 0
0 1 0
0 0 1

	 , 

𝑃 𝑏q = 𝒩 𝜇 = 𝑏q
® , 𝜎b\ = 𝜏 , 

where the expected value of the offset 𝑏q (i.e., 𝑏q
(q)) and the strength 𝜏 of the prior belief 

are free parameters.  
To simulate the first experiment from Rieskamp and Otto (2006), we created a 

compensatory environment and a non-compensatory environment. In the compensatory 
environment, WADD always makes the Bayes-optimal decision and TTB disagrees half 
of the time. Conversely, in the non-compensatory environment TTB always makes the 
Bayes-optimal decision and WADD disagrees half of the time. To determine the optimal 
choices, we computed the probability that option A is superior to option B given their 
ratings by Bayesian inference under the assumption that positive and negative ratings are 
equally common. First, we randomly generated a set of candidate decision problems. For 
each of these problems, we computed the posterior probability that the first option is 
superior to the second option given their attributes' values and their validities. We then 
used these posterior probabilities to select which candidate decision problems to present 
in the compensatory environment and which to present in the non-compensatory 
environment. To match the reward probabilities of Experiment 1 by Rieskamp and Otto 
(2006), the feedback was determined solely based on the environment and the chosen 
strategy: the probability of positive feedback was 92% whenever the strategy matched the 
structure of the environment (e.g., WADD in the compensatory environment) and only 

                                                
6 This entails that all cue validities are inspected on all trials even when a fast-and-frugal 
heuristic like TTB is chosen. This makes the number of information acquisitions on trials 
where TTB is used more similar to the number of information acquisitions on trials where 
WADD is used. This diminishes the relative number of information acquisitions saved by 
TTB. However, this does not affect the number of inspected cue values. 
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58% when it did not (e.g., TTB in the compensatory environment). Positive feedback 
meant winning $0.15 whereas negative feedback meant losing $0.15.  

To simulate the experiment, we let our rational metareasoning models learn the 
agent’s opportunity cost from experience; the prior mean of the opportunity cost was 
initialized with $7/h and the prior precision corresponded to one minute’s worth of 
experience. For simplicity, we assumed that people perform one step of TTB or WADD 
per second. To estimate which strategy people considered more effective a priori, we set 
the prior expectation of the problem-independent performance of TTB (𝑏ÆÆÇ

(®) ) to zero and 
fit the model’s prior expectation of the problem independent performance of WADD 
(𝑏ÈÉÊÊ

(0) ) and the strength of the agent’s prior beliefs about the strategies’ performance 
and execution time (𝜏) to the data. Specifically, we determined these parameters by 
maximum-likelihood estimation from the frequencies with which Rieskamp and Otto's 
participants used TTB in each block using grid search. The likelihood function was 
estimated by running at least 10 simulations of the experiment for each point on the grid 
of potential parameter values. Rieskamp and Otto (2006) estimated that participants made 
accidental errors in about 5% of the trials. To capture these errors and avoid numerical 
problems, we modelled people’s apparent strategy choice frequencies by 

𝜃�h�jh�ÌÍ
(Î) =

0.9 ⋅ 𝑛�h�jh�ÌÍ
Î + 0.1 ⋅ 0.5 ⋅ 𝑛hihjk

(Î)

𝑛hihjk
(Î) 							(5), 

where strategy is a placeholder for either TTB or WADD and  𝑛hihjk
(Î) = 𝑛ÆÆÇ

(Î) + 𝑛ÈÉÊÊ
(Î)  is 

the total number of trials in block 𝑏.7  
The resulting parameter estimates captured that people initially preferred WADD 

to TTB (𝑏WADD
(0) = +0.32) and required many decisions’ worth of experience to revise 

their beliefs (𝜏 = 88.59). Our simulation showed that rational metareasoning can explain 
people's ability to adapt their strategy choices to the structure of their environment (see 
Figure 11): When the decision environment was non-compensatory, then our model 
learned to use TTB and avoid WADD. But when the decision environment was non-
compensatory, then our model learned to use WADD and avoid TTB. In addition, 
rational metareasoning captured that people adapt their strategy choices gradually.  

We also estimated the parameters of the SSL model and the three SCADS models 
introduced above. The SCADS models were equipped with two categories for 
compensatory versus non-compensatory problems respectively. The free parameters of 
the SCADS models determined the initial associations between each category and the two 
strategies. The first parameter was the sum of the two strategies’ association strengths, 
and the second parameter was the relative strength of the association with the WADD 
strategy. The global association strengths were the sums of the category-specific 
associations. For the SSL model, we estimated the relative reward expectancy of the 

                                                
7 This assumption is not a model of the underlying psychological processes. Instead, it 
serves as a placeholder for all unknown and known influences on strategy selection that 
the model does not capture. The frequency of trials in which the strategy is chosen at 
random was selected so as to generate 5% of trials in which the chosen strategy disagrees 
with the one prescribed by the model. We assumed random choice because it is the 
weakest assumption we could make. 
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WADD strategy (𝛽WADD) and the strength of the initial reward expectancy (𝑤) by the 
simulation-based maximum-likelihood method described above (Equation 5). 

 

 
Figure 11: Fit of rational metareasoning model and SSL to the empirical data by 
Rieskamp and Otto (2006). 

 
The maximum-likelihood estimates of the SSL model’s parameters were 𝛽WADD =

0.35 and 𝑤 = 30. The mean squared error of the fit achieved by the SSL model was 
about half the MSE of the rational metareasoning model (0.0018 vs. 0.0043); see Figure 
11. Consequently, the Bayesian information criterion provided strong evidence for the 
SSL model over the full rational metareasoning model (BICSSL=60.70 vs. BICRM=68.94; 
Kass & Raftery, 1995) and all lesioned metareasoning models (BIC≥ 70.52). The BIC of 
the full rational metareasoning model was slightly higher than the BIC for the lesioned 
metareasoning model without features (BIC = 70.52), and the data provided strong or 
very strong evidence for the full metareasoning model over all other lesioned 
metareasoning models (BIC ≥ 75.94). The fit of the SCADS models was comparable to 
the fit of the SSL model and significantly better than the fits of the metareasoning models 
(BICSCADS1 = 61.09, BICSCADS2 = 62.38, and BICSCADS3 = 62.01). Finally, we repeated our 
model comparison for both environments separately. Consistent with the original model 
comparison results, we found that SSL provided a better explanation for the data from the 
compensatory environment (BICSSL = 32.64 vs. BICRM = 34.29) and the data from 
noncompensatory environment (BICSSL = 36.22 vs. BICRM = 37.81) than the rational 
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metareasoning models. The performance of the SCADS models was close to the 
performance of the SSL models (BICSCADS = 32.72 for the compensatory environment 
and BICSCADS = 36.35 for the noncompensatory environment). 

The quantitative differences between the model fits should be taken with a grain 
of salt because they depend on the auxiliary assumption that people use the exact TTB 
and WADD strategies available to the models and no other strategies. This assumption is 
questionable for at least two reasons: First, TTB and WADD are merely placeholders for 
the class of non-compensatory strategies and the class of compensatory strategies 
respectively (Rieskamp & Otto, 2006). Second, previous work suggests that the human 
mind is equipped with a much larger repertoire of decision strategies (Payne, et al., 
1988). If the rational metareasoning model was also equipped with a larger repertoire of 
strategies, then it would learn more gradually and probably achieve a better fit to the 
human data. Due to these caveats, we focus on the models’ qualitative predictions 
because they are less sensitive to different auxiliary assumptions. 

The feature-based learning mechanism of the SCADS model and the context-free 
learning mechanism of the SSL model captured the human data equally well 
(BICSSL	-BICSCADS1 = 0.04 ≪ 2), and the feature-based learning mechanism of the 
rational metareasoning model also captured the qualitative changes in people’s strategy 
choices. Since the data by Rieskamp and Otto (2006) can be explained by either feature-
based or context-free strategy selection learning, we designed a new experiment to 
determine which mechanism is responsible for people’s adaptive strategy choices. 

Experiment 4: Adaptive flexibility increases with learning 
The fourth prediction of our model is that people learn to flexibly switch their 

strategies on a trial-by-trial basis to exploit the structure of individual problems. An 
alternative hypothesis embodied by SSL and RELACS is that strategy selection learning 
serves to identify the one strategy that works best on average across all problems in a 
given environment. To design an experiment that can discriminate these hypotheses, we 
evaluated the performance of context-free versus feature-based strategy selection learning 
in 11 environments with 0%,	10%, 20%,⋯ , 100% compensatory problems and 100%,
90%, 80%, ⋯ , 0% non-compensatory problems respectively. Critically, all 
compensatory problems were designed such that TTB fails to choose the better option 
and WADD succeeds, and all non-compensatory problems were designed such that TTB 
succeeds and WADD fails. For each of the 11 decision environments, we compared the 
average performance predicted by rational metareasoning with the parameters 𝑏ÆÆÇ

(®) =
𝑏ÈÉÊÊ
(®) = 0 and 𝜏 = 1, against the predictions of the five lesioned metareasoning models 

with the same parameters, SSL with parameters 𝛽* = 𝛽\ = 0.5 and 𝑤 = 1, RELACS 
with parameters 𝛼 = 0.1 and 𝜆 = 1, and the three SCADS models with an association 
strength of 0.5 between each strategy and two categories corresponding to compensatory 
and non-compensatory problems respectively.8  

Our simulations revealed that feature-based and context-free strategy selection 
learning predict qualitatively different effects of the relative frequency of compensatory 

                                                
8 These parameters were chosen to give each model a weak, initial bias towards using 
both strategies equally often. The exact value of this bias is not critical because it is 
quickly overwritten by experience. 
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versus non-compensatory decision problems; see Figure 13A. Concretely, the 
performance of model-free strategy selection learning drops rapidly as the decision 
environment becomes more heterogeneous: As the ratio of compensatory to non-
compensatory problems approaches 50/50 the performance of context-free strategy 
selection learning (SSL, RELACS, and the lesioned metareasoning model without 
features) and SCADS9 drops to the level of chance. By contrast, the performance of 
feature-based strategy selection learning (rational metareasoning) is much less 
susceptible to this heterogeneity and stays above 60%. The reason is that rational 
metareasoning learns to use TTB for non-compensatory problems and WADD for 
compensatory problems, whereas SSL and RELACS learn to always use the same 
strategy. We can therefore determine whether people rely on context-free or feature-
based strategy selection with the following experiments that puts participants in a 
heterogeneous environment.  

 
Figure 12: Interface of Experiment 4: Strategy selection in multi-attribute decision-
making. 

 Methods. We recruited 100 participants on Amazon Mechanical Turk. The 
experiment lasted about 25-30 min, and participants were paid $1.25 plus a performance-
                                                
9 The problem preventing the SCADS model from choosing the best strategy for each 
category is that the category-specific association strengths are multiplied by a category-
unspecific association strength. 



STRATEGY SELECTION AS RATIONAL METAREASONING 
 

44 

dependent bonus of up to $1.25. The experiment instantiated the decision environment 
with 50% compensatory problems and 50% non-compensatory problems from the 
simulations above. Participants played a banker deciding between giving a loan to 
company A versus company B based on their ratings on multiple attributes with explicitly 
stated predictive validities (see Figure 12). There were 12 attributes in total. Half of these 
attributes were reliable (predictive validity ≥ 85%) whereas the other half was unreliable 
(predictive validity ≤ 63%). Concretely, the attributes Financial Flexibility, Efficiency, 
Capital Structure, Management, Own Financial Resources, and Qualifications of 
Employees had predictive validities of 95%,93%,90%,87%,85%, and 83% respectively, 
whereas the attributes Investment Policy, Business History, Real Estate, Industry, 
Reputation, and Location had predictive validities of 63%, 60%, 57%, 55%, 53%, and 
51% respectively. Each trial presented either 3, 4, 5, or 6 attributes with equal 
probability. On non-compensatory trials, exactly one of the attributes was reliable and all 
other attributes were unreliable. By contrast, on compensatory trials all attributes were 
reliable or all attributes were unreliable. Reliable and unreliable attributes were selected 
randomly and their order was randomized. The two options always had opposite ratings 
on the most predictive attribute, and 75% of the ratings on other attributes were opposite 
to the rating on the most predictive attribute while 25% agreed with it. After choosing 
Company A or Company B, participants received stochastic binary feedback: $+50,000 
versus $-50,000.  On compensatory trials, the probability of positive feedback was 95% 
when the participant’s choice agreed with the choice of WADD and 5% when it 
disagreed with WADD. On non-compensatory trials the probability of positive feedback 
was 95% when their choice agreed with TTB and 5% otherwise.  
 Each participant made 100 binary choices, earning a bonus of	1.25 cents for each 
correct decision and losing 1.25 cents for each incorrect decision. Critically, the ratio of 
compensatory to non-compensatory problems was 50/50: The problems were chosen such 
that TTB and WADD make opposite decisions on every trial. In half of the trials, the 
decision of TTB was correct and in the other half WADD was correct. Therefore, always 
using TTB, always using WADD, choosing one of these two strategies at random, or 
context-free strategy selection would perform at chance level; see Figure 13A. 

 Results and Discussion. To determine the quality of people’s strategy choices, 
we compared their decisions on each trial to those of the strategy appropriate for the 
problem presented on that trial. For compensatory trials, we evaluated people’s choices 
against those of WADD and for non-compensatory trials we evaluated them against TTB. 
People’s decisions agreed with those of the appropriate strategy on 76.2% of the trials 
(see Figure 13A). To quantify our uncertainty about this estimate, we computed its 
credible interval assuming a uniform prior (Edwards et al., 1963). We found that the 99% 
highest-posterior density interval ranged from 75.1% to 77.3%. We can thus be 99% 
confident that people's average performance in the mixed decision environment was at 
least 75% and conclude that they performed significantly better than chance (𝑝 < 0.001, 
Cohen’s 𝑤 = 52.36). As shown in Figure 13B, people’s performance increased 
significantly from 70.4% in the first ten trials to 80.4% in the last ten trials (𝜒\ 1 =
26.96, 𝑝 < 0.001, Cohen’s 𝑤 = 5.19). To gain a better understanding of this effect, we 
performed a logistic regression of the agreement between people’s choices and those of 
the appropriate strategy; the regressors were the trial number, a constant, and the 
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decision’s compensatoriness. We found that people’s performance increased significantly 
over trials (𝑡 9996 = 9.46, 𝑝 < 0.001). Consistent with the finding that people initially 
prefer compensatory strategies (Rieskamp & Otto, 2006), people performed better on 
compensatory trials than on non-compensatory trials overall (𝑡 9996 = 9.46, 𝑝 <
0.001) and this effect dissipated over time (𝑡 9996 = −7.20, 𝑝 < 0.001). Analyzing 
compensatory and non-compensatory trials separately with logistic regression revealed 
that our participants’ performance on non-compensatory trials improved significantly 
over time (𝑡 4998 = 9.46, 𝑝 < 0.001) while their performance on compensatory trials 
remained constant (𝑡 4998 = −0.92, 𝑝 = 0.36).  Interestingly, people performed 
significantly above chance already on the first trial (73% correct; 𝑝 < 0.001). This 
suggests that people either entered the experiment with applicable expertise in when to 
use compensatory versus non-compensatory decision strategies, as suggested by the 
results of Payne et al. (1988) or possess general purpose strategies that work well on both 
kinds of problems. Both factors might also explain why people performed systematically 
better than all of our models (Figure 13A). 
  This level of performance could not have been achieved by context-free 
strategy selection, which performed at chance, but it is qualitatively consistent with 
feature-based strategy selection which performed significantly better than chance; see 
Figure 13A. We also simulated the experiment with three SCADS models that were 
equipped with two categories corresponding to compensatory versus non-compensatory 
problems and differed in their reward function (𝑟 = correctness, vs. 𝑟 = correctness −
cost, vs. 𝑟 = correctness/time). We found that the performance of the SCADS models 
was very similar to the performance of the SSL model. Most importantly, its performance 
dropped to the chance level as the environment became increasingly more heterogeneous. 
This happened because the global association strength interfered with category-specific 
strategy choices. Additional simulations with the five lesioned metareasoning models 
revealed that feature-based learning was indispensable to capture human performance. 
For more information, see Supplementary Figure 9 in the Supplementary Online 
Material. 
 These results should be taken with a grain of salt because the model 
comparisons presuppose that TTB and WADD are the only decision strategies that people 
are equipped with even though people’s repertoire most likely includes many additional 
strategies. It is conceivable that participants succeeded in Experiment 4 by relying on a 
single strategy that succeeds on both compensatory and non-compensatory problems. 
Because of this possibility, Experiment 4 does not provide definite evidence for feature-
based strategy selection. However, Experiment 1, Experiment 3, and the simulations of 
mental arithmetic presented in the following sections also support feature-based strategy 
selection. Taken together these experiments and simulations provide very strong evidence 
for feature-based strategy selection learning. 
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A 

 
B 

 

Figure 13: Model predictions and findings of Experiment 4. A: People and rational 
metareasoning perform significantly above chance in heterogeneous environments but 
context-free strategy selection mechanisms do not. B: People's performance increased 
with experience. The trial-by-trial frequencies were smoothed by a moving average over 
20 trials. The error bars enclose 95% confidence intervals. 
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Conclusion 
The experiments presented in this section confirmed the predictions of our 

resource-rational theory of strategy selection learning: The first experiment showed that 
people learn to think less when they think too much. The second experiment showed that 
people learn to think more when they think too little. Thirdly, we showed that people 
learn to adapt not only how much they think but also how they think to the structure of 
the environment. Finally, Experiment 4 demonstrated that adaptive flexibility also 
increases with learning, and this enables people’s strategy choices to exploit the structure 
of individual problems. Most importantly, in all four cases, the underlying learning 
mechanisms made people’s strategy choices increasingly more resource-rational. Hence, 
the empirical evidence presented in this section supports our hypothesis that the human 
brain is equipped with learning mechanisms that make it more resource-rational over 
time. Even though people may not be resource-rational when they first enter a new 
environment, the way in which they process information appears to converge to the 
rational use of their finite time and bounded computational resources. Given the support 
for this view in the domain of decision-making, the following two sections investigate 
whether this conclusion also holds for other domains. 

Strategy selection and cognitive development 
So far, we have found that adults’ strategy choices in sorting, decision-making, 

and planning become increasingly more rational through learning within minutes. Since 
learning is an important driving force of cognitive change our theory predicts similar 
phenomena should also occur on the much longer time-scales of cognitive development. 

A substantial literature on the development of children’s arithmetic competencies 
suggests that cognitive development does not proceed in a sequence of discrete stages 
characterized by a progression of beliefs, representations, and cognitive strategies as 
proposed by Piaget (Piaget & Cook, 1952) but rather as a gradual shift in the frequency 
with which children use each of multiple coexisting cognitive strategies (Siegler & 
Shipley, 1995). According to Siegler’s overlapping waves theory of cognitive 
development (see Figure 14A; Siegler, 1996) children of every age use a variety of 
strategies, and over time strategies that are both effective and efficient come to be used 
more frequently.  

To give just one example of such strategic development (Siegler, 1999) we 
consider the development of children’s strategies for mental addition shown in Figure 
14B. Svenson and Sjöberg (1983) found that the Retrieval strategy becomes increasingly 
more prominent as children get older, while the frequency of not providing an answer 
drops rapidly. The frequency of the Sum strategy rises initially making it the most 
common strategy at the beginning of second grade, but afterwards its frequency drops 
again. The frequency of the Min strategy rises initially, and then it stays roughly constant 
until the Min strategy is overtaken by the Retrieval strategy.  
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A 

 
B 

 
Figure 14:  Overlapping waves theory of cognitive development . (A) Illustration of the 
theory from Siegler (1999). (B) Empirical support for overlapping waves in the 
development of children's strategy use in mental addition according to Svenson and 
Sjobert (1983). 

Children’s strategic development raises the question of how they learn to use 
effective strategies more and less effective strategies less. Learning to use effective 
strategies is complicated by the fact that each strategy’s effectiveness differs from one 
problem to the next: a strategy that works excellently for one type of problem may fail 
miserably on a different kind of problem. According to the SCADS model by Shrager 
and Siegler (1998), children solve this problem by gradually strengthening the association 
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between the type of the problem solved and the strategy used after every correct answer. 
However, this model presupposes that children already know how to categorize problems 
in such a way that problems within the same category require the same strategies. 
Furthermore, the SCADS model presumes that learning is driven solely by whether or not 
the strategy produced the correct answer. This ignores the effort and time required to 
execute the strategy, and the mechanism is difficult to apply when performance feedback 
is continuous, as in economic decisions, rather than binary. Furthermore, even when 
those limitations are overcome the specific learning mechanism of the SCADS model 
appears to fail in some situations in which humans succeed (Lieder et al., 2014).  

Our rational metareasoning model overcomes these limitations of the SCADS 
model. It could thus be used to model strategic development in domains that do not 
comply with the assumptions of the SCADS model. However, the applicability of our 
model to cognitive development remains to be evaluated. In this section we provide a 
proof of concept that our model can capture the developmental progression of children’s 
cognitive strategies in the domain of mental arithmetic. To do so, we simulate the 
development of children’s strategies for mental addition (Svenson & Sjöberg, 1983) 
according to rational metareasoning. 

We recreated Shrager and Siegler's simulation of the development of children’s 
strategy use for single-digit addition problems in which both summands lie between 1 
and 5 (Shrager & Siegler, 1998; Svenson & Sjöberg, 1983) with our strategy selection 
model. To make the model predictions as comparable as possible, we retained all of the 
assumptions that Shrager and Siegler made about children’s strategies. Concretely, we 
assumed that children use the following four strategies for mental addition: 

1. Retrieval: retrieve the answer from memory. 
2. Sum: First, use the fingers of one hand to count up to the first summand. Then use 

the fingers of the other hand to count up the second summand. Finally count the 
total number of raised fingers on either hand. 

3. Shortcut Sum: After counting up to the first summand, continue counting upwards 
to the sum. 

4. Min: Start counting upwards from the larger summand. 
These four strategies differ in how many counting operations they require to solve any 
given problem. To account for the discovery of the Shortcut Sum strategy and the Min 
strategy, our metareasoning models start out with only the Retrieval strategy and the sum 
strategy. The Shortcut Sum strategy and the Min strategy are added after 90 and 95 trials 
respectively because this is how long it took children to discover those strategies in a 
study by Siegler and Jenkins (1989). To simulate reaction times, we assumed that each 
counting operation takes about half a second as indicated by the findings of Geary and 
Brown (1991). Following Shrager and Siegler (1998), errors were modeled by assuming 
that each counting step is incorrectly executed with probability 𝑝���i� = 0.04. We 
generated the number of incorrectly executed steps by drawing from the binomial 
distribution Binomial(#steps, 𝑝¢ºº º). The effect of each error was to either omit a 
counting operation, for example “3,3” instead of “3,4”, or to skip a number, for example 
“3,5” rather than “3,4”.  

To model the Retrieval strategy, we modeled children’s memory for arithmetic 
facts by the associative memory model used in the SCADS model (Shrager & Siegler, 
1998; Siegler & Shipley, 1995; Siegler & Shrager, 1984) with the same set of parameters. 
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This model characterizes memory for arithmetic facts by how strongly each possible 
answer 𝑎 is associated with each problem 𝑥 + 𝑦. The state of a child’s long-term memory 
for arithmetic facts can therefore be described by a three-dimensional matrix 𝐴 𝑎, 𝑥, 𝑦  of 
associative strengths. For the most familiar addition problems whose first or second 
summand was 1 the associative strength was initialized with 0.05. For all other addition 
problems, the associative strengths were initialized by 1/(10 ⋅ #values). Each time a 
strategy produced an answer the strength of the association between the answer and the 
pair of summands was increased by 0.06 if the answer was correct or by 0.03 when the 
answer was wrong. Each time the Retrieval strategy is used it samples a confidence 
criterion between 0 and 1 uniformly at random. The probability that a potential answer 
will be sampled is its associative strength divided by the sum of the associative strengths 
of all possible answers. If the associative strength of the sampled answer exceeds the 
confidence criterion, then the answer is reported. Otherwise the sampling process is 
repeated. If no answer’s associative strength exceeded the confidence threshold after 10 
attempts, then the Retrieval strategy fails to answer the question. The execution time of 
the Retrieval strategy was modeled as 0.5 seconds times the number of retrieved answers. 
 To apply our rational strategy selection learning model to mental addition, we 
have to specify how problems are represented, the form of the meta-level model, and 
children’s prior knowledge about the performance of addition strategies. We assume that 
children represent the addition problem 𝑥 + 𝑦 =? by three simple features 

f = 𝑓*, 𝑓\, 𝑓� = 𝑠*, 𝑠\,maxj 𝐴(𝑎, 𝑥, 𝑦) , 
where the third feature is the associative strength of the answer that is most strongly 
associated with the problem in memory. Since the feedback that children receive in 
mental addition is binary (“right” or “wrong”), the meta-level model is 

𝑃 𝑅 = 1 f, 𝑆 = 𝑖 =
1

1 + exp 𝑏Z + 𝛼p,Z
(t) ⋅ 𝑓p�

pl*

, 

where the bias term 𝑏Z captures influences on the strategy’s performance that are not 
captured by the features of the problem to be solved. We model children’s prior 
knowledge about the performance of addition strategies by the model’s prior on the bias 
weights. The simulations by Shrager and Siegler (1998) and Siegler and Shipley (1995) 
assumed that children initially know only the Retrieval strategy and the Sum strategy but 
have to discover the more efficient strategies on their own, since parents teach the Sum 
strategy first and memory retrieval is a domain general capacity that precedes knowledge 
of arithmetic. To capture these assumptions our simulations assume that children’s prior 
expectation about the strategies’ performance is positive for the Sum strategy (𝑃 𝑏\ =
𝒩(5,1)), neutral for the familiar Retrieval strategy (𝑃 𝑏\ = 𝒩(0,1)), but negative for 
the other strategies that are still unfamiliar (𝑃 𝑏� = 𝑃 𝑏� = 𝑃 𝑏° = 𝒩(−5,1)). As in 
all previous applications of our model, the meta-level model uses Bayesian linear 
regression to predict each strategy’s execution time from each problem’s features. The 
relative cost of time was set such that finding the correct answer was worth 100 seconds. 
Since this corresponds to each child’s subjective utility of being correct, this simulation 
assumed that the opportunity cost is known and does not have to be learned. To 
determine the predictions of our rational metareasoning model, we simulated the 200 
virtual participants’ choices of addition strategies across 100 blocks of 10 addition 
problems each. Addition problems were independently generated by randomly sampling 
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the first and the second summand from two independent uniform distributions over their 
possible values, that is 1,2,3,4, or 5. 

A 

  
B 

 
Figure 15: Comparison of models of how children learn to select arithmetic strategies. 
Error bars enclose 95% confidence intervals. (A) Predictions of rational metareasoning. 
(B) Predictions of the SCADS model according to Shrager and Siegler (1998). 
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A 

 
B 

 
Figure 16: Learning curves of rational metareasoning simulations of children’s strategic 
development in mental arithmetic. Error bars enclose 95% confidence intervals. (A) 
Gradual increase in performance predicted by rational metareasoning (RM). (B) 
Generalization of the Min strategy with versus without challenge problems.  

 
The simulation results shown in Figure 15 suggest that our rational theory of 

strategy selection learning can capture the qualitative changes in children’s use of 



STRATEGY SELECTION AS RATIONAL METAREASONING 
 

53 

addition strategies observed by Svenson and Sjöberg (1983): Our simulation captures the 
transient rise and fall of accurate but effortful addition strategies, the shift toward the 
more efficient Min strategy, and the eventual transition towards the predominant use of 
the Retrieval strategy. Comparing the predictions of our model with those of the SCADS 
model (Figure 15) suggests that both models capture the same developmental trends 
about equally well. Furthermore, like the SCADS model, rational metareasoning also 
captures the gradual increase in children’s performance (see Error! Reference source 
not found.A) and the transfer from simple addition problems with summands ranging 
from 1 to 5 to more challenging addition problems with one addend above 20 and the 
other addend below 5. As shown in Error! Reference source not found.B, rational 
metareasoning predominantly selected the most accurate and the most efficient approach, 
namely the Min strategy, to solve the challenge problems even though it had never 
encountered any of those problems before.  
 Like the SCADS model, our model captures the increasingly adaptive strategy 
choices that children make: our model learned to use the Retrieval strategy more often for 
easy problems than for hard problems. This is adaptive because the Retrieval strategy is 
less accurate on hard problems because, due to past mistakes, hard problems are more 
strongly associated with wrong answers than easy problems. In our simulation, the 
correlation between a participant’s average performance on a problem and the frequency 
with which they used the Retrieval strategy increased from 𝑟 4998 = −0.11 (𝑝 <
0.001) in the first 500 problems to 𝑟 4998 = 0.28 (𝑝 < 0.001) in problems 501 to 
1000. In addition, our model learned to choose the Min strategy over less efficient and 
more error-prone addition strategies when the Retrieval strategy appeared inapplicable. 
Furthermore, the model learned to choose the Min strategy adaptively: The advantage of 
the Min strategy over alternative addition strategies increases with the sum and the 
difference between the addends. Across all simulated trials, the model’s choice of the 
Min strategy was significantly correlated with the sum (𝑟 141609 = 0.30, 𝑝 < 0.001) 
and the absolute value of the difference between the addends (𝑟 141609 = 0.24,𝑝 <
0.001). Furthermore, the correlation with the sum or the difference was stronger than the 
correlation with other factors such as the product (𝑟 141609 = 0.20, 𝑝 < 0.001). In 
addition, the model’s choices of the Min strategy became more adaptive: Shortly after the 
discovery of the Min strategy (trials 100-150 to be precise) its use was less well predicted 
by the difference between the two summands (𝑟 4998 = 0.17, 𝑝 < 0.001) than by their 
product (𝑟 4998 = 0.32, 𝑝 < 0.001), but ten blocks later the difference between the 
two summands predicted the choice of the Min strategy (𝑟 4998 = 0.23, 𝑝 < 0.001) 
better than their product (𝑟 4998 = 0.09, 𝑝 < 0.001) as in Siegler and Shipley (1995). 
 As shown in Error! Reference source not found.B, the proportion of 
applications of the Min strategy out of all addition strategies increased steadily from 
37.2% in the first 50 trials after its discovery towards 100%. The learning curve shows 
that the process by which the Min strategy is generalized from one problem on which it 
worked well to all other problems is gradual and takes more than 1000 examples. This is 
consistent with the empirical finding that children are slow to generalize the Min strategy 
to other problems upon its discovery. Siegler and Jenkins (1989) found that the 
generalization of the Min strategy proceeds much more rapidly when children who have 
recently discovered the Min strategy are posed challenge problems such as 4 + 25. 
Shrager and Siegler (1998) modeled the experiment by Siegler and Jenkins (1989) by 
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replacing the 50 simple problems presented after the discovery of the Min strategy by 50 
challenge problems in which one of the addends is larger than 20 and the other addend is 
smaller than 5. We performed the equivalent simulation with our rational metareasoning 
model by replacing the 50 problems following the first five blocks by 50 challenge 
problems. As shown in Error! Reference source not found.B, feature-based strategy 
selection learning captures the empirical finding that challenge problems boost children’s 
transfer of the Min strategy to challenging as well as simple problems (Siegler & Jenkins, 
1989). To test if the observed differences were significant, we performed one t-test for 
each of the 20 simulated blocks of 50 problems with the Bonferroni-corrected 
significance level of 0.05/20 = 0.0025. We found that the average adaptivity was not 
significantly different before the challenge problems (all 𝑝 ≥ 0.20) but became highly 
significant once the challenge problems were introduced (𝑝 < 0.001) and remained 
statistically significant until block 19 (all 𝑝 ≤ 0.02) after which the performance of both 
groups reached its asymptote (all 𝑝 ≥ 0.50). 
 To determine which components of our model were critical to capture the 
development of children’s choice of addition strategies, we reran the simulation with the 
five lesioned metareasoning models. We found that exploration is necessary for strategic 
development, because without exploration the rational metareasoning model never 
discovered the Shortcut Sum strategy or the Min strategy, and it failed to switch to the 
Retrieval strategy even after it had plenty of experience to rely on (Supplementary Figure 
10). Feature-based strategy selection was also critical, because the metareasoning model 
without features predicted that children would transition directly from the Sum Strategy 
to the Retrieval strategy without using the Shortcut Sum or the Min strategy in between 
(Supplementary Figure 11). This might be because the features are necessary to learn that 
the Retrieval strategy works only when the problem is familiar whereas the Min Strategy 
is superior for unfamiliar problems where one of the addends is small. Likewise, the 
lesioned metareasoning model that maximized accuracy regardless of time cost never 
discovered the Min strategy or the Shortcut Sum strategy but transitioned directly from 
the standard Sum strategy to memory retrieval (Supplementary Figure 12). Model-free 
metacognitive reinforcement learning of the VOC (𝑟 = reward-cost) predicted that the 
Sum strategy would fade much faster than it has been observed in children and failed to 
predict children’s eventual transition to the Retrieval strategy (cf. Figure 14B vs. 
Supplementary Figure 13) Finally, model-free learning of the reward rates predicted an 
almost instantaneous shift to the Min strategy and also failed to predict the subsequent 
transition to the Retrieval strategy (see Supplementary Figure 14). These findings suggest 
that maintaining separate representations of execution time, opportunity cost, and 
expected reward enables faster learning and adaptation to changes in the strategies’ 
performance or the reward rate. 

In this section, we have demonstrated that rational metareasoning can explain 
several qualitative features of the shifts in children’s choice of addition strategies. Most 
importantly, feature-based strategy selection learning formalizes the overlapping waves 
theory of cognitive development (Siegler, 1996) by a powerful, general learning 
mechanism. This suggests that our model should be able to capture similar phenomena in 
other domains of cognitive development as well.  However, the change in children’s 
strategy choices explained by our model is only one of three parts of strategic 
development, which also includes the discovery of new strategies and the change of 
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existing strategies. To overcome this limitation, future work should combine our model 
of strategy selection learning with models of strategy discovery and strategy change. We 
will revisit this future direction in the General Discussion. 

Feature-based strategy selection learning is more widely applicable than the basic 
SCADS model. Unlike the SCADS model our model can also learn from continuous 
feedback, as well as execution time or mental effort, and it does not presuppose that 
problems can be categorized appropriately. On the other hand, the SCADS model 
captures an important mechanism that is not yet included in our resource-rational account 
of strategic development: strategy discovery. Both mechanisms play an important role in 
strategic development. Therefore, our contributions are more complementary than they 
are in competition. Formalizing the computational mechanisms of strategy discovery and 
the formation of mental habits within the rational metareasoning framework is a 
promising direction for future research. To apply rational metareasoning to the strategy 
discovery problem, future research might combine learning to predict the VOC of 
individual computations from features of the current mental state with techniques from 
hierarchical reinforcement learning (Barto, Singh, & Chentanez, 2004; Barto & 
Mahadevan, 2003; Botvinick, Niv, & Barto, 2009; Sutton, Precup, & Singh, 1999). 

General Discussion 
How do we know when to think fast and when to think slow? Do we use our 

heuristics rationally or irrationally? How good are we at selecting the right strategy for 
the right problem? To answer these questions, we derived a rational solution to the 
strategy selection problem and evaluated it against human behavior and previous theories 
of strategy selection. 

Our results support the conclusion that people gradually learn to use their 
cognitive strategies more rationally. According to our rational metareasoning model, 
these adaptive changes result from a rational metacognitive learning mechanism that 
builds a predictive model of each strategy’s execution time and accuracy. Jointly, the 
experiments, simulations, and model comparisons reported in this article provided very 
strong evidence for all four components of our model: strategy selection based on an 
approximate cost-benefit analysis, feature-based metacognitive reinforcement learning, 
separate predictive models of accuracy and execution time, and the exploration of 
alternative strategies. 
 Our model’s predictions captured the variability, contingency, and change of 
people’s strategy choices in domains ranging from sorting to decision-making, and 
mental arithmetic as well as problem solving (see Supplementary Online Material). Our 
model provides a unifying explanation for a number of phenomena that were previously 
explained by different models. Overall, the dependence of people’s strategy choices on 
task and context variables was consistent with a rational strategy selection mechanism 
that exploits the features of each problem to achieve an optimal cost-benefit tradeoff. 
Likewise, the change in people’s strategy choices over time was consistent with rational 
learning of a predictive model of each strategy’s performance and choosing strategies 
rationally with respect to the model learned so far. This learning mechanism 
simultaneously accounts for the developmental progression of children’s arithmetic 
competence on a time scale of years and the adaptions of adults’ decision strategies on a 
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time scale of minutes. The remaining variability of people’s strategy choices was 
consistent with the near-optimal exploration-exploitation tradeoff of Thompson sampling. 

Critically, our new experiments and simulations showed that our model captures 
people’s capacity to adapt to heterogeneous environments where each problem is unique 
and may require a different strategy than the previous one. Previous theories were unable 
to account for this adaptive flexibility but our rational account of strategy selection does. 
When we consider all of these phenomena jointly, our findings support the view that 
people choose cognitive strategies rationally subject to the constraints imposed by their 
finite time, limited information, and bounded cognitive resources. Its rational cost-benefit 
analysis allows our model to capture that people allocate their time and cognitive 
resources strategically so as to maximize their expected reward rate across multiple 
decisions rather than just their immediate reward on the current problem. 

In addition, Experiments 2, 3, and 4 confirmed our model’s prediction that 
resource-rationality increases with learning. In other words, people learn to make 
increasingly more rational use of their finite time and limited cognitive resources. 
Concretely, we found that people learn to think more when thinking is worthwhile and to 
think less when it is not. According to our theory, these adaptive changes result from 
metacognitive learning, and a person’s experience is the primary limit on the rationality 
of their strategy choices. 

Theoretical significance: implications for the debate about human rationality 
Our theory reconciles the two poles of the debate about human rationality by 

suggesting that people gradually learn to make increasingly more rational use of fallible 
heuristics. Our emphasis on metacognitive learning provides a fresh alternative to 
previous accounts that viewed rationality as a fixed, static ideal, and irrationality as a 
pervasive trait. Instead, our theory suggests that we are constantly learning to think, learn, 
and decide more resource-rationally with respect to the problems, rewards, and costs we 
experience. Hence, if we engage seriously with the environments we want to master, then 
metacognitive learning should propel us towards bounded rationality as we learn to 
choose the strategies that achieve the best possible cost-benefit tradeoff. Thus, although 
we might never reach the ideals of (bounded) rationality, we can become a little more 
resource-rational every time we use a cognitive strategy. Whether these improvements 
depend on deliberate reflection is an interesting question for future research. 

The strategy selection problem is a critical missing piece in the puzzle of what it 
means to be boundedly rational. Our proposal for a rational solution to the strategy 
selection problem might therefore be an important step towards a unifying theory of 
bounded rationality. Indeed, recent work suggests that rationally choosing among a small 
number of cognitive strategies is optimal for bounded agents (Milli, Lieder, & Griffiths, 
2017). Our model solves the riddle how a bounded agent can possibly optimize the use of 
its limited resources by investing some of them into solving the computationally 
intractable and potentially recursive problem of optimizing the use of its limited 
resources. We have proposed that the mind side-steps the computational complexity and 
infinite regress of this problem by learning—rather than computing—the value of 
investing time and cognitive resources into one strategy versus another. We show that 
good strategies can be selected very efficiently once an approximation to the value of 
computation has been learned and that the learning process can be implemented very 
efficiently as well (see Figure 1). Despite its simplicity this mechanism can adaptively 
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choose between complex and extremely time- and resource-consuming strategies. It may 
thereby enable the mind to save a substantial amount of cognitive resources and find 
good approximate solutions to intractable problems. Our model can therefore be used to 
complete dual-process theories of bounded rationality (Evans & Stanovich, 2013; Evans, 
2003; Kahneman, 2011) by a rational, yet tractable, mechanism for determining when to 
employ which system. Our strategy selection mechanism could be integrated into dual-
process theories to predict exactly when people think fast and when they think slow. 
Likewise, our mechanism could also be integrated into adaptive toolbox theories of 
bounded rationality (Todd & Brighton, 2015; Todd & Gigerenzer, 2012) to predict 
exactly which heuristic people will use in a given situation. This line of research would 
lead to mathematically precise, falsifiable theories of bounded rationality that could be 
quantitatively evaluated against empirical data and each other. 

Our perspective emphasizes the importance of metacognitive values for human 
rationality. This emphasis is consistent with the view that individual differences in 
rationality reflect people’s dispositions towards different cognitive styles (“the reflective 
mind”) rather than their cognitive abilities per se (“the algorithmic mind”, Stanovich, 
2011). Our theory suggests that the disposition towards rational versus heuristic thinking 
is not fixed and innate but malleable and learned from experience. Yet, our theory also 
suggests that a person’s propensity for rational thinking can be highly situational because 
the mind estimates the value of deliberation from contextual features. 

Future directions 
Future work should extend the proposed model to capture additional aspects of 

human cognition. One such extension could be a more realistic model of the cost of 
strategy execution which captures that some strategies are more effortful than others. 
This could be achieved by modeling how much cognitive resources, such as working 
memory, each strategy consumes at each point in time. With this extension, the total cost 
of executing a strategy could be derived by adding up the opportunity costs of its 
consumed resources over the time course of its execution. 

While our model comparisons show that strategy selection learning requires some 
form of exploration, it is silent about how this exploration is accomplished. The 
Thompson sampling mechanism evaluated here is one of the best solutions to the 
exploration-exploitation tradeoff known to date (Chapelle & Li, 2011; Kaufmann, Korda, 
& Munos, 2012), but many alternative exploration mechanisms have been proposed in 
the reinforcement learning literature. These proposals range from simple mechanisms like 
epsilon-greedy action selection and the soft-max decision rule (Sutton & Barto, 1998) to 
more sophisticated mechanisms including upper-confidence bound algorithms (Auer, 
2002) and other exploration bonuses (Brafman & Tennenholtz, 2002). At this point, each 
of these algorithms is a viable hypothesis about human strategy selection, and designing 
experiments to test them is an important direction for future research. 

While our simulations and model comparisons favored learning separate 
predictive models of execution time and accuracy over learning the VOC directly, this 
advantage might reflect specific, auxiliary assumptions of our model. A more definitive 
answer will require experiments that systematically disambiguate these two learning 
mechanisms. Based on how model-free and model-based control over behavior are 
usually disambiguated (Dickinson, 1985), strategy selection experiments that devaluate 
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speed or accuracy (but not both) after people have learned to achieve the optimal speed-
accuracy tradeoff might be a fruitful direction for future research. 

Since our model is agnostic about the set of strategies people choose from, future 
work should determine which strategies are available to people. This could be done by 
comparing rational metareasoning models with different sets of strategies using Bayesian 
model selection  (Scheibehenne, Rieskamp, & Wagenmakers, 2013).  

People’s decision mechanisms likely include strategies with continuous 
parameters, such as sequential sampling models with decision thresholds and attentional 
biases (Smith & Ratcliff, 2004), satisficing strategies with aspiration levels (Simon, 
1955), and simulation-based decision mechanisms that can perform varying numbers of 
simulations (e.g., Lieder et al., 2014). Furthermore, the proposed process model only 
learns about a small subset of all possible cognitive strategies. To select among all 
possible sequences of elementary information processing operations, our process model 
has to be extended to learning the VOC of individual computations instead of only 
learning the VOC of complete strategies that always generate an action yielding reward. 
Current work is extending the proposed model to overcome these limitations (Krueger, 
Lieder, & Griffiths, 2017; Lieder, Krueger, & Griffiths, 2017; Lieder, Shenhav, Musslick, 
& Griffiths, 2017).   

To capture people’s ability to plan sequences of cognitive operations, future work 
might add predictive models for features of the agent’s future internal states alongside the 
predictive models of the expected reward and execution time. This extension would 
correspond to learning option models (Sutton et al., 1999)—a form of model-based 
hierarchical reinforcement learning (Barto & Mahadevan, 2003; Sutton et al., 1999) that 
holds promise for explaining the complex hierarchical structure of human behavior 
(Botvinick & Weinstein, 2014). Both extensions could be combined with ideas from 
hierarchical reinforcement learning to capture how people discover novel, more effective 
strategies by flexibly combining elementary operations with partial. 
 The third major limitation of the current model is that it presupposes domain-
specific problem features. A complete account of strategy selection would have to specify 
where those representations come from. To provide such an account, our model could be 
implemented as a hierarchical neural network with several layers in-between the 
perceptual input and the representation of the features as illustrated in Figure 1. In such a 
network the features could emerge from the same error-driven learning mechanism used 
to learn the weights between the feature layer and the layers representing the network’s 
predictions (cf. Mnih et al., 2015).  
 Future experiments might also investigate whether the proposed feature-based 
strategy-selection mechanism coexists with a more basic, automatic strategy selection 
mechanisms based on context-free RL. If so, then our framework could be used to model 
the arbitration between them as rational meta-strategy-selection. 

One important open theoretical question is under which, if any, conditions the 
proposed strategy selection mechanism is boundedly optimal (Russell & Subramanian, 
1995). While it is possible to prove the optimality of a program for a particular 
computational architecture, such proofs have yet to be attempted for computational 
models of the human mind. 

In addition to its contributions to the debate about human rationality and its utility 
for future basic research, our model of strategy selection learning might also have 



STRATEGY SELECTION AS RATIONAL METAREASONING 
 

59 

potential practical applications in education and cognitive training. In terms of education, 
our model could be used to optimize the problem sets used to teach students when to use 
which approach—for instance in mathematical problem solving or high school algebra. In 
terms of cognitive training, our model could be used to investigate which training 
regimens increase cognitive flexibility by promoting adaptive strategy selection. 
According to our theory, people’s ability to (learn to) represent problems by general 
features that are predictive of the differential efficacy of alternative strategies would be a 
critical prerequisite for such training to succeed. 

In conclusion, our findings paint an optimistic picture of the human mind by 
highlighting metacognitive learning and the resulting cognitive growth. This perspective 
highlights that our rationality is not fixed but malleable and constantly improving. We 
hope that specifying what people’s metacognitive learning mechanisms might be, our 
model will give us a handle on how to leverage them to promote cognitive growth.  
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Appendix A 
1. SSL and RELACS 
According to the SSL model (Rieskamp & Otto, 2006) the probability that strategy 𝑖 

will be chosen (𝑃(𝑆𝑡	 = 	𝑖)) in trial 𝑡 is proportional to its reward expectancy 𝑞𝑖: 
𝑃 𝑆� 	= 	𝑖 ∝ 	𝑞𝑡	 𝑖 ,	

where 𝑞𝑡	(𝑘) is the sum of the rewards obtained when strategy 𝑘 was chosen prior to trial 
𝑡 plus the initial reward expectancy 

𝑞0 𝑘 = 	𝑟𝑚𝑎𝑥 ⋅ 𝑤 ⋅ 	𝑏𝑘, 
where 𝑟𝑚𝑎𝑥  is the highest possible reward, 𝑤 is the strength of the initial reward 
expectancy, and 𝑏1,⋯ , 𝑏𝑁 ∈ 	 [0; 1] are the agent’s initial relative reward expectancies for 
strategies 1,⋯ ,𝑁  and sum to one.  

The RELACS model (Erev & Barron, 2005) chooses strategies according to their 
recency-weighted average payoffs 

𝑤��* 𝑘 = 𝛼 ⋅ 𝑟� + 1 − 𝛼 ⋅ 𝑤�(𝑘) if	𝑆� = 𝑘
𝑤� else  

𝑃 𝑆� = 𝑘 ∝ 𝑒æ⋅
çè p
éè , 

where the parameters 𝛼  and 𝜆 determine the agent’s learning rate and decision noise 
respectively, and 𝑉𝑡  is the agent’s current estimate of the payoff variability. 

2. Conjugate update equations for the posterior distribution of a Gaussian 
likelihood and a Gaussian prior 

The prior on the reward rate is a normal distribution and the likelihood of the ratio of 
observed total reward over total time is a standard normal distribution, that is 

𝑃 𝑟 = 𝒩 1,1 , 

𝑃 𝑟total
𝑡total

𝑟 = 𝒩 𝑟,
𝑡total
60sec . 

 
Consequently, the posterior distribution of the reward rate is  

𝑃 𝑟 𝑟hihjk, 𝑡hihjk = 𝒩 𝜇post, 𝜏post , 
with  

𝜏post = 𝜏��6i� + 𝜏k6ê�k6ëiiì = 1 +
𝑡total
60sec 

𝜇post =
𝜏��6i� ⋅ 𝜇prior + 𝜏k6ê�k6ëiiì ⋅

𝑟total
𝑡total

𝜏��6i� + 𝜏k6ê�k6ëiiì
=
1 + 𝑟total

60sec	
1 + 𝑡total

60sec
. 

 

3. Bayesian Regression 
For continuous outcomes (i.e., execution time and reward) we performed exact Bayesian 
inference in a linear regression model (Kunz, 2009; Lindley & Smith, 1972). For binary 
outcomes (i.e., correct vs. incorrect) we use Bayesian logistic regression with the Laplace 
approximation (Lieder & Griffiths, 2015; Lieder et al., 2014). This approach learns a 
probability distribution over the amount of time that will pass and the amount of reward 
that will be obtained. 

The Bayesian linear regression (Kunz, 2009; Lindley & Smith, 1972) model for 
the execution time 𝑇 was defined as 
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𝑃 𝑇 𝐟, 𝑠, 𝑤 u , 𝜎u\ = 𝒩 𝜇 = 𝑤p,q
u ⋅ 𝑓Z

Z

, 𝜎u\ , 

𝑃 𝑤:,q
u = 𝒩 𝜇 = 0, 𝛴 = Id , 

𝑃 𝜎u\ = InvGamma 𝛼®, 𝛽® , 
where 𝒩 stands for the normal distribution, InvGamma stands for the inverse gamma 
distribution, 𝑤:,q

u  is the vector of the the weights of all features on the expected execution 
time of strategy 𝑠, and Id stands for the identity matrix. Given observed rewards 
𝒓(𝟏,⋯,𝒕) = (𝑟*,⋯ , 𝑟�) in trials 1,⋯ , 𝑡 when the strategy was applied to a problem with 
features 𝒇(*,⋯,�) = 𝒇(*),⋯ , 𝒇(�) , i.e.  𝑃 𝛼 q |𝒓, 𝒇(*,⋯,�)  the model’s prior distributions 
on the regression coefficient and the variance were updated to the respective posterior 
distributions 𝑃 𝛼 u |𝒓(*,⋯,�), 𝒇(*,⋯,�)  and 𝑃 𝜎u\|𝒓(*,⋯,�), 𝒇(*,⋯,�) . Since the priors are 
conjugate to the likelihood function, the posterior distributions are in the same family as 
the prior distributions and their parameters can be computed by the standard update 
equations for the normal-normal and normal-gamma models (Kunz, 2009; Lindley & 
Smith, 1972). When the reward was continuous, then the same model was used for 
learning to predict the reward. But if the reward was binary then we used Bayesian 
logistic regression with the Laplace approximation (see Section 3). 
 The model’s priors on the error variance and the precision of the prior on 
regression coefficients were set to convey weak domain knowledge. In the sorting 
simulations, the prior expectation on the variance of the noise was 10 for the execution 
time in seconds (𝛼® = 1, 𝛽® = 10) and 0.1 for the binary reward (𝛼® = 10, 𝛽® = 1), and 
the standard deviation of the prior on the regression coefficients was 10 for the execution 
time and 1 for the binary score. These priors reflect that the execution times in this 
simulation were one to two orders of magnitude larger than the rewards.  
 In the simulations of the decision-making experiments by Payne et al. (1988), the 
prior expectation of the variance in the execution time was 1 (𝛼® = 𝛽® = 1), and the 
variance of the prior on the coefficients predicting the execution time was 1 as well. 
Since the relative reward was confined to the interval [−1,1] the prior expectation of its 
error variance was 0.1 (𝛼® = 1, 𝛽® = 0.1); the precision of the prior on the regression 
coefficients was 1. 
 The simulations of the Mouselab experiments assumed a time cost of $7/h at a 
rate of 1 computation/sec. The prior on the reward rate corresponded to 1 minute’s worth 
of experience in an environment with a reward rate of $7/h. The prior distributions on the 
strategies expected rewards and execution times were a normal distribution with mean 
zero and precision 0.1. The priors on the error variances of execution time and expected 
reward were Gamma(1,1). 
 In the simulations of the Rieskamp experiments the precision of the Gaussian 
prior on the coefficients of the reward model and the execution time model were 
estimated according to the maximum likelihood method. The prior on the error variance 
of the score model was Gamma(1,0.1) and the prior on the error variance of the 
execution time was Gamma(1,1).  
 In the simulations of mental arithmetic, the variance of the prior on the regression 
coefficients was 1 for both the execution time model and the model of accuracy, because 
the score was binary and single-digit addition takes only a few seconds. The prior on the 
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error variance of the execution time was Gamma(1,1) because the execution time 
variability of addition strategies is in the order of seconds.   

4. Laplace Approximation to Bayesian Logistic Regression 
When the reward is binary (e.g., correct versus incorrect) rather than continuous, then 
linear regression would be ill-suited to predict it. Hence, in this case our model uses 
Bayesian logistic regression to predict that probability that the response will be correct 
(𝑅 = 1). According the Bayesian logistic regression model, the probability that a strategy 
𝑠 will generate a reward is given by 

𝑃 𝑅 = 1 𝑠,f, 𝛼 =
1

1 + exp − 𝑤p,q
t ⋅ 𝑓pp

, 

𝑃 𝛼 q = 𝒩 𝛍 = 𝟎, 𝚺 = 0.01 ⋅ 𝐈  
The posterior distribution on the regression coefficients 𝑤:,q

t  for the expected reward of 
strategy 𝑠 given observed rewards 𝒓(𝟏,⋯,𝒕) = (𝑟*,⋯ , 𝑟�) in trials 1,⋯ , 𝑡 when the strategy 
was applied to a problem with features 𝒇(*,⋯,�) = 𝒇(*),⋯ , 𝒇(�) , i.e.  𝑃 𝑤:,q

t |𝒓, 𝒇(*,⋯,�) , 
does no longer have a simply analytic solution. Therefore, we approximate by a normal 
distribution whose mean is the mode of the posterior distribution and whose precision 
matrix is the negative Hessian (which is the matrix of second partial derivatives) of the 
log-posterior at its mode: 

𝑃 𝑤:,q
t |𝒓(*,⋯,�), 𝒇(*,⋯,�) ≈ 𝑄 𝑤:,q

t ; 	𝒓 *,⋯,� , 𝒇(𝟏,⋯,𝒕)
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This is known as the Laplace approximation. It can be derived as a second-order Taylor 
series expansion of the log-posterior. The posterior mode was determined by numerical 
optimization using the function fminunc from the Matlab 2014b optimization toolbox and 
the gradients and Hessian were computed analytically. 

5. Feature Selection by Bayesian Model Selection 
To model how people discover which features are relevant for predicting a strategy’s 

execution time or reward, our model includes a feature selection mechanism. According 
to our model, features are selected by Bayesian model selection (Kass & Raftery, 1995). 
Concretely, we consider one model for each possible subset of the features and determine 
the model with the highest posterior probability given the observations. To efficiently 
compute Bayes factors, we exploit that all models are nested within the full model that 
includes all of the features by computing Savage-Dickey ratios (Penny & Ridgway, 
2013). 


